Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7\times 3\left(2x-3\right)-7\times 2\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 7\left(2x-3\right)\left(x+2\right), the least common multiple of \left(x+2\right)\left(2x-3\right),7.
21\left(2x-3\right)-7\times 2\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Multiply 7 and 3 to get 21.
42x-63-7\times 2\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Use the distributive property to multiply 21 by 2x-3.
42x-63-14\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Multiply -7 and 2 to get -14.
42x-63-14x-28=\left(2x-3\right)\left(x+2\right)
Use the distributive property to multiply -14 by x+2.
28x-63-28=\left(2x-3\right)\left(x+2\right)
Combine 42x and -14x to get 28x.
28x-91=\left(2x-3\right)\left(x+2\right)
Subtract 28 from -63 to get -91.
28x-91=2x^{2}+x-6
Use the distributive property to multiply 2x-3 by x+2 and combine like terms.
28x-91-2x^{2}=x-6
Subtract 2x^{2} from both sides.
28x-91-2x^{2}-x=-6
Subtract x from both sides.
27x-91-2x^{2}=-6
Combine 28x and -x to get 27x.
27x-91-2x^{2}+6=0
Add 6 to both sides.
27x-85-2x^{2}=0
Add -91 and 6 to get -85.
-2x^{2}+27x-85=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-27±\sqrt{27^{2}-4\left(-2\right)\left(-85\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 27 for b, and -85 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-2\right)\left(-85\right)}}{2\left(-2\right)}
Square 27.
x=\frac{-27±\sqrt{729+8\left(-85\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-27±\sqrt{729-680}}{2\left(-2\right)}
Multiply 8 times -85.
x=\frac{-27±\sqrt{49}}{2\left(-2\right)}
Add 729 to -680.
x=\frac{-27±7}{2\left(-2\right)}
Take the square root of 49.
x=\frac{-27±7}{-4}
Multiply 2 times -2.
x=-\frac{20}{-4}
Now solve the equation x=\frac{-27±7}{-4} when ± is plus. Add -27 to 7.
x=5
Divide -20 by -4.
x=-\frac{34}{-4}
Now solve the equation x=\frac{-27±7}{-4} when ± is minus. Subtract 7 from -27.
x=\frac{17}{2}
Reduce the fraction \frac{-34}{-4} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{17}{2}
The equation is now solved.
7\times 3\left(2x-3\right)-7\times 2\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 7\left(2x-3\right)\left(x+2\right), the least common multiple of \left(x+2\right)\left(2x-3\right),7.
21\left(2x-3\right)-7\times 2\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Multiply 7 and 3 to get 21.
42x-63-7\times 2\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Use the distributive property to multiply 21 by 2x-3.
42x-63-14\left(x+2\right)=\left(2x-3\right)\left(x+2\right)
Multiply -7 and 2 to get -14.
42x-63-14x-28=\left(2x-3\right)\left(x+2\right)
Use the distributive property to multiply -14 by x+2.
28x-63-28=\left(2x-3\right)\left(x+2\right)
Combine 42x and -14x to get 28x.
28x-91=\left(2x-3\right)\left(x+2\right)
Subtract 28 from -63 to get -91.
28x-91=2x^{2}+x-6
Use the distributive property to multiply 2x-3 by x+2 and combine like terms.
28x-91-2x^{2}=x-6
Subtract 2x^{2} from both sides.
28x-91-2x^{2}-x=-6
Subtract x from both sides.
27x-91-2x^{2}=-6
Combine 28x and -x to get 27x.
27x-2x^{2}=-6+91
Add 91 to both sides.
27x-2x^{2}=85
Add -6 and 91 to get 85.
-2x^{2}+27x=85
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+27x}{-2}=\frac{85}{-2}
Divide both sides by -2.
x^{2}+\frac{27}{-2}x=\frac{85}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{27}{2}x=\frac{85}{-2}
Divide 27 by -2.
x^{2}-\frac{27}{2}x=-\frac{85}{2}
Divide 85 by -2.
x^{2}-\frac{27}{2}x+\left(-\frac{27}{4}\right)^{2}=-\frac{85}{2}+\left(-\frac{27}{4}\right)^{2}
Divide -\frac{27}{2}, the coefficient of the x term, by 2 to get -\frac{27}{4}. Then add the square of -\frac{27}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{27}{2}x+\frac{729}{16}=-\frac{85}{2}+\frac{729}{16}
Square -\frac{27}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{27}{2}x+\frac{729}{16}=\frac{49}{16}
Add -\frac{85}{2} to \frac{729}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{27}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{27}{2}x+\frac{729}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{27}{4}=\frac{7}{4} x-\frac{27}{4}=-\frac{7}{4}
Simplify.
x=\frac{17}{2} x=5
Add \frac{27}{4} to both sides of the equation.