Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Rationalize the denominator of \frac{3+\sqrt{5}}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
\frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
\frac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
\frac{\left(3+\sqrt{5}\right)^{2}}{4}
Multiply 3+\sqrt{5} and 3+\sqrt{5} to get \left(3+\sqrt{5}\right)^{2}.
\frac{9+6\sqrt{5}+\left(\sqrt{5}\right)^{2}}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{5}\right)^{2}.
\frac{9+6\sqrt{5}+5}{4}
The square of \sqrt{5} is 5.
\frac{14+6\sqrt{5}}{4}
Add 9 and 5 to get 14.