Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}
Rationalize the denominator of \frac{3+\sqrt{5}}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\frac{\left(3+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{4-5}
Square 2. Square \sqrt{5}.
\frac{\left(3+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}
Subtract 5 from 4 to get -1.
-\left(3+\sqrt{5}\right)\left(2+\sqrt{5}\right)
Anything divided by -1 gives its opposite.
-\left(6+3\sqrt{5}+2\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Apply the distributive property by multiplying each term of 3+\sqrt{5} by each term of 2+\sqrt{5}.
-\left(6+5\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)
Combine 3\sqrt{5} and 2\sqrt{5} to get 5\sqrt{5}.
-\left(6+5\sqrt{5}+5\right)
The square of \sqrt{5} is 5.
-\left(11+5\sqrt{5}\right)
Add 6 and 5 to get 11.
-11-5\sqrt{5}
To find the opposite of 11+5\sqrt{5}, find the opposite of each term.