Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3}{3x^{2}-2x+1}x^{2}-2x
Express \frac{3x^{2}-2x+1+x^{5}}{3x^{2}-2x+1}\times 3 as a single fraction.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}}{3x^{2}-2x+1}-2x
Express \frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3}{3x^{2}-2x+1}x^{2} as a single fraction.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}}{3x^{2}-2x+1}+\frac{-2x\left(3x^{2}-2x+1\right)}{3x^{2}-2x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{3x^{2}-2x+1}{3x^{2}-2x+1}.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}-2x\left(3x^{2}-2x+1\right)}{3x^{2}-2x+1}
Since \frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}}{3x^{2}-2x+1} and \frac{-2x\left(3x^{2}-2x+1\right)}{3x^{2}-2x+1} have the same denominator, add them by adding their numerators.
\frac{9x^{4}-6x^{3}+3x^{2}+3x^{7}-6x^{3}+4x^{2}-2x}{3x^{2}-2x+1}
Do the multiplications in \left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}-2x\left(3x^{2}-2x+1\right).
\frac{9x^{4}-12x^{3}+7x^{2}+3x^{7}-2x}{3x^{2}-2x+1}
Combine like terms in 9x^{4}-6x^{3}+3x^{2}+3x^{7}-6x^{3}+4x^{2}-2x.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3}{3x^{2}-2x+1}x^{2}-2x
Express \frac{3x^{2}-2x+1+x^{5}}{3x^{2}-2x+1}\times 3 as a single fraction.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}}{3x^{2}-2x+1}-2x
Express \frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3}{3x^{2}-2x+1}x^{2} as a single fraction.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}}{3x^{2}-2x+1}+\frac{-2x\left(3x^{2}-2x+1\right)}{3x^{2}-2x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{3x^{2}-2x+1}{3x^{2}-2x+1}.
\frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}-2x\left(3x^{2}-2x+1\right)}{3x^{2}-2x+1}
Since \frac{\left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}}{3x^{2}-2x+1} and \frac{-2x\left(3x^{2}-2x+1\right)}{3x^{2}-2x+1} have the same denominator, add them by adding their numerators.
\frac{9x^{4}-6x^{3}+3x^{2}+3x^{7}-6x^{3}+4x^{2}-2x}{3x^{2}-2x+1}
Do the multiplications in \left(3x^{2}-2x+1+x^{5}\right)\times 3x^{2}-2x\left(3x^{2}-2x+1\right).
\frac{9x^{4}-12x^{3}+7x^{2}+3x^{7}-2x}{3x^{2}-2x+1}
Combine like terms in 9x^{4}-6x^{3}+3x^{2}+3x^{7}-6x^{3}+4x^{2}-2x.