Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(\left(\sqrt{3}\right)^{2}-8\sqrt{3}+16\right)+5\left(\sqrt{3}-4\right)+2}{2\left(\sqrt{3}-4\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-4\right)^{2}.
\frac{3\left(3-8\sqrt{3}+16\right)+5\left(\sqrt{3}-4\right)+2}{2\left(\sqrt{3}-4\right)}
The square of \sqrt{3} is 3.
\frac{3\left(19-8\sqrt{3}\right)+5\left(\sqrt{3}-4\right)+2}{2\left(\sqrt{3}-4\right)}
Add 3 and 16 to get 19.
\frac{57-24\sqrt{3}+5\left(\sqrt{3}-4\right)+2}{2\left(\sqrt{3}-4\right)}
Use the distributive property to multiply 3 by 19-8\sqrt{3}.
\frac{57-24\sqrt{3}+5\sqrt{3}-20+2}{2\left(\sqrt{3}-4\right)}
Use the distributive property to multiply 5 by \sqrt{3}-4.
\frac{57-19\sqrt{3}-20+2}{2\left(\sqrt{3}-4\right)}
Combine -24\sqrt{3} and 5\sqrt{3} to get -19\sqrt{3}.
\frac{37-19\sqrt{3}+2}{2\left(\sqrt{3}-4\right)}
Subtract 20 from 57 to get 37.
\frac{39-19\sqrt{3}}{2\left(\sqrt{3}-4\right)}
Add 37 and 2 to get 39.
\frac{39-19\sqrt{3}}{2\sqrt{3}-8}
Use the distributive property to multiply 2 by \sqrt{3}-4.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{\left(2\sqrt{3}-8\right)\left(2\sqrt{3}+8\right)}
Rationalize the denominator of \frac{39-19\sqrt{3}}{2\sqrt{3}-8} by multiplying numerator and denominator by 2\sqrt{3}+8.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{\left(2\sqrt{3}\right)^{2}-8^{2}}
Consider \left(2\sqrt{3}-8\right)\left(2\sqrt{3}+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{2^{2}\left(\sqrt{3}\right)^{2}-8^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{4\left(\sqrt{3}\right)^{2}-8^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{4\times 3-8^{2}}
The square of \sqrt{3} is 3.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{12-8^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{12-64}
Calculate 8 to the power of 2 and get 64.
\frac{\left(39-19\sqrt{3}\right)\left(2\sqrt{3}+8\right)}{-52}
Subtract 64 from 12 to get -52.
\frac{-74\sqrt{3}+312-38\left(\sqrt{3}\right)^{2}}{-52}
Use the distributive property to multiply 39-19\sqrt{3} by 2\sqrt{3}+8 and combine like terms.
\frac{-74\sqrt{3}+312-38\times 3}{-52}
The square of \sqrt{3} is 3.
\frac{-74\sqrt{3}+312-114}{-52}
Multiply -38 and 3 to get -114.
\frac{-74\sqrt{3}+198}{-52}
Subtract 114 from 312 to get 198.