Evaluate
-\frac{3\sqrt{2}}{2}-\sqrt{3}\approx -3.853371151
Share
Copied to clipboard
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{\left(6-3\sqrt{6}\right)\left(6+3\sqrt{6}\right)}
Rationalize the denominator of \frac{3\sqrt{3}}{6-3\sqrt{6}} by multiplying numerator and denominator by 6+3\sqrt{6}.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{6^{2}-\left(-3\sqrt{6}\right)^{2}}
Consider \left(6-3\sqrt{6}\right)\left(6+3\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{36-\left(-3\sqrt{6}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{36-\left(-3\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-3\sqrt{6}\right)^{2}.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{36-9\left(\sqrt{6}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{36-9\times 6}
The square of \sqrt{6} is 6.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{36-54}
Multiply 9 and 6 to get 54.
\frac{3\sqrt{3}\left(6+3\sqrt{6}\right)}{-18}
Subtract 54 from 36 to get -18.
-\frac{1}{6}\sqrt{3}\left(6+3\sqrt{6}\right)
Divide 3\sqrt{3}\left(6+3\sqrt{6}\right) by -18 to get -\frac{1}{6}\sqrt{3}\left(6+3\sqrt{6}\right).
-\frac{1}{6}\sqrt{3}\times 6-\frac{1}{6}\sqrt{3}\times 3\sqrt{6}
Use the distributive property to multiply -\frac{1}{6}\sqrt{3} by 6+3\sqrt{6}.
-\sqrt{3}-\frac{1}{6}\sqrt{3}\times 3\sqrt{6}
Cancel out 6 and 6.
-\sqrt{3}-\frac{1}{6}\sqrt{3}\times 3\sqrt{3}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-\sqrt{3}-\frac{1}{6}\times 3\times 3\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\sqrt{3}+\frac{-3}{6}\times 3\sqrt{2}
Express -\frac{1}{6}\times 3 as a single fraction.
-\sqrt{3}-\frac{1}{2}\times 3\sqrt{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-\sqrt{3}+\frac{-3}{2}\sqrt{2}
Express -\frac{1}{2}\times 3 as a single fraction.
-\sqrt{3}-\frac{3}{2}\sqrt{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}