Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(3\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
Rationalize the denominator of \frac{3\sqrt{2}+\sqrt{5}}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
\frac{\left(3\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-1\right)}{2-1}
Square \sqrt{2}. Square 1.
\frac{\left(3\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-1\right)}{1}
Subtract 1 from 2 to get 1.
\left(3\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-1\right)
Anything divided by one gives itself.
3\left(\sqrt{2}\right)^{2}-3\sqrt{2}+\sqrt{5}\sqrt{2}-\sqrt{5}
Apply the distributive property by multiplying each term of 3\sqrt{2}+\sqrt{5} by each term of \sqrt{2}-1.
3\times 2-3\sqrt{2}+\sqrt{5}\sqrt{2}-\sqrt{5}
The square of \sqrt{2} is 2.
6-3\sqrt{2}+\sqrt{5}\sqrt{2}-\sqrt{5}
Multiply 3 and 2 to get 6.
6-3\sqrt{2}+\sqrt{10}-\sqrt{5}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.