Solve for x
x=-\frac{3\left(y-5\right)}{2\left(27-5y\right)}
y\neq 5\text{ and }y\neq \frac{27}{5}
Solve for y
y=-\frac{3\left(18x-5\right)}{3-10x}
x\neq 0\text{ and }x\neq \frac{3}{10}
Graph
Share
Copied to clipboard
\left(y-5\right)\times 3+x\times 4=10x\left(y-5\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x\left(y-5\right), the least common multiple of x,y-5.
3y-15+x\times 4=10x\left(y-5\right)
Use the distributive property to multiply y-5 by 3.
3y-15+x\times 4=10xy-50x
Use the distributive property to multiply 10x by y-5.
3y-15+x\times 4-10xy=-50x
Subtract 10xy from both sides.
3y-15+x\times 4-10xy+50x=0
Add 50x to both sides.
3y-15+54x-10xy=0
Combine x\times 4 and 50x to get 54x.
-15+54x-10xy=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
54x-10xy=-3y+15
Add 15 to both sides.
\left(54-10y\right)x=-3y+15
Combine all terms containing x.
\left(54-10y\right)x=15-3y
The equation is in standard form.
\frac{\left(54-10y\right)x}{54-10y}=\frac{15-3y}{54-10y}
Divide both sides by -10y+54.
x=\frac{15-3y}{54-10y}
Dividing by -10y+54 undoes the multiplication by -10y+54.
x=\frac{3\left(5-y\right)}{2\left(27-5y\right)}
Divide -3y+15 by -10y+54.
x=\frac{3\left(5-y\right)}{2\left(27-5y\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
\left(y-5\right)\times 3+x\times 4=10x\left(y-5\right)
Variable y cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by x\left(y-5\right), the least common multiple of x,y-5.
3y-15+x\times 4=10x\left(y-5\right)
Use the distributive property to multiply y-5 by 3.
3y-15+x\times 4=10xy-50x
Use the distributive property to multiply 10x by y-5.
3y-15+x\times 4-10xy=-50x
Subtract 10xy from both sides.
3y+x\times 4-10xy=-50x+15
Add 15 to both sides.
3y-10xy=-50x+15-x\times 4
Subtract x\times 4 from both sides.
3y-10xy=-54x+15
Combine -50x and -x\times 4 to get -54x.
\left(3-10x\right)y=-54x+15
Combine all terms containing y.
\left(3-10x\right)y=15-54x
The equation is in standard form.
\frac{\left(3-10x\right)y}{3-10x}=\frac{15-54x}{3-10x}
Divide both sides by 3-10x.
y=\frac{15-54x}{3-10x}
Dividing by 3-10x undoes the multiplication by 3-10x.
y=\frac{3\left(5-18x\right)}{3-10x}
Divide 15-54x by 3-10x.
y=\frac{3\left(5-18x\right)}{3-10x}\text{, }y\neq 5
Variable y cannot be equal to 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}