Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{a+1}-a+\frac{a+1}{a^{2}-4a+4}
Divide 1 by \frac{a^{2}-4a+4}{a+1} by multiplying 1 by the reciprocal of \frac{a^{2}-4a+4}{a+1}.
\frac{3}{a+1}-\frac{a\left(a+1\right)}{a+1}+\frac{a+1}{a^{2}-4a+4}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+1}{a+1}.
\frac{3-a\left(a+1\right)}{a+1}+\frac{a+1}{a^{2}-4a+4}
Since \frac{3}{a+1} and \frac{a\left(a+1\right)}{a+1} have the same denominator, subtract them by subtracting their numerators.
\frac{3-a^{2}-a}{a+1}+\frac{a+1}{a^{2}-4a+4}
Do the multiplications in 3-a\left(a+1\right).
\frac{3-a^{2}-a}{a+1}+\frac{a+1}{\left(a-2\right)^{2}}
Factor a^{2}-4a+4.
\frac{\left(3-a^{2}-a\right)\left(a-2\right)^{2}}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{\left(a+1\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-2\right)^{2} is \left(a+1\right)\left(a-2\right)^{2}. Multiply \frac{3-a^{2}-a}{a+1} times \frac{\left(a-2\right)^{2}}{\left(a-2\right)^{2}}. Multiply \frac{a+1}{\left(a-2\right)^{2}} times \frac{a+1}{a+1}.
\frac{\left(3-a^{2}-a\right)\left(a-2\right)^{2}+\left(a+1\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}
Since \frac{\left(3-a^{2}-a\right)\left(a-2\right)^{2}}{\left(a+1\right)\left(a-2\right)^{2}} and \frac{\left(a+1\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3a^{2}-12a+12-a^{4}+4a^{3}-4a^{2}-a^{3}+4a^{2}-4a+a^{2}+a+a+1}{\left(a+1\right)\left(a-2\right)^{2}}
Do the multiplications in \left(3-a^{2}-a\right)\left(a-2\right)^{2}+\left(a+1\right)\left(a+1\right).
\frac{4a^{2}-14a+13-a^{4}+3a^{3}}{\left(a+1\right)\left(a-2\right)^{2}}
Combine like terms in 3a^{2}-12a+12-a^{4}+4a^{3}-4a^{2}-a^{3}+4a^{2}-4a+a^{2}+a+a+1.
\frac{4a^{2}-14a+13-a^{4}+3a^{3}}{a^{3}-3a^{2}+4}
Expand \left(a+1\right)\left(a-2\right)^{2}.
\frac{3}{a+1}-a+\frac{a+1}{a^{2}-4a+4}
Divide 1 by \frac{a^{2}-4a+4}{a+1} by multiplying 1 by the reciprocal of \frac{a^{2}-4a+4}{a+1}.
\frac{3}{a+1}-\frac{a\left(a+1\right)}{a+1}+\frac{a+1}{a^{2}-4a+4}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a+1}{a+1}.
\frac{3-a\left(a+1\right)}{a+1}+\frac{a+1}{a^{2}-4a+4}
Since \frac{3}{a+1} and \frac{a\left(a+1\right)}{a+1} have the same denominator, subtract them by subtracting their numerators.
\frac{3-a^{2}-a}{a+1}+\frac{a+1}{a^{2}-4a+4}
Do the multiplications in 3-a\left(a+1\right).
\frac{3-a^{2}-a}{a+1}+\frac{a+1}{\left(a-2\right)^{2}}
Factor a^{2}-4a+4.
\frac{\left(3-a^{2}-a\right)\left(a-2\right)^{2}}{\left(a+1\right)\left(a-2\right)^{2}}+\frac{\left(a+1\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-2\right)^{2} is \left(a+1\right)\left(a-2\right)^{2}. Multiply \frac{3-a^{2}-a}{a+1} times \frac{\left(a-2\right)^{2}}{\left(a-2\right)^{2}}. Multiply \frac{a+1}{\left(a-2\right)^{2}} times \frac{a+1}{a+1}.
\frac{\left(3-a^{2}-a\right)\left(a-2\right)^{2}+\left(a+1\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}}
Since \frac{\left(3-a^{2}-a\right)\left(a-2\right)^{2}}{\left(a+1\right)\left(a-2\right)^{2}} and \frac{\left(a+1\right)\left(a+1\right)}{\left(a+1\right)\left(a-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3a^{2}-12a+12-a^{4}+4a^{3}-4a^{2}-a^{3}+4a^{2}-4a+a^{2}+a+a+1}{\left(a+1\right)\left(a-2\right)^{2}}
Do the multiplications in \left(3-a^{2}-a\right)\left(a-2\right)^{2}+\left(a+1\right)\left(a+1\right).
\frac{4a^{2}-14a+13-a^{4}+3a^{3}}{\left(a+1\right)\left(a-2\right)^{2}}
Combine like terms in 3a^{2}-12a+12-a^{4}+4a^{3}-4a^{2}-a^{3}+4a^{2}-4a+a^{2}+a+a+1.
\frac{4a^{2}-14a+13-a^{4}+3a^{3}}{a^{3}-3a^{2}+4}
Expand \left(a+1\right)\left(a-2\right)^{2}.