Evaluate
-\frac{7x}{3}+\frac{3}{7}
Factor
\frac{9-49x}{21}
Quiz
Algebra
5 problems similar to:
\frac{ 3 }{ 7 } - \frac{ x }{ y } \frac{ 7 }{ 9 } \frac{ y }{ z } 3z
Share
Copied to clipboard
\frac{3}{7}-\frac{x}{y}\times \frac{7\times 3}{9}\times \frac{y}{z}z
Express \frac{7}{9}\times 3 as a single fraction.
\frac{3}{7}-\frac{x}{y}\times \frac{21}{9}\times \frac{y}{z}z
Multiply 7 and 3 to get 21.
\frac{3}{7}-\frac{x}{y}\times \frac{7}{3}\times \frac{y}{z}z
Reduce the fraction \frac{21}{9} to lowest terms by extracting and canceling out 3.
\frac{3}{7}-\frac{x\times 7}{y\times 3}\times \frac{y}{z}z
Multiply \frac{x}{y} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{7}-\frac{x\times 7y}{y\times 3z}z
Multiply \frac{x\times 7}{y\times 3} times \frac{y}{z} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{7}-\frac{7x}{3z}z
Cancel out y in both numerator and denominator.
\frac{3}{7}-\frac{7xz}{3z}
Express \frac{7x}{3z}z as a single fraction.
\frac{3}{7}-\frac{7x}{3}
Cancel out z in both numerator and denominator.
\frac{3\times 3}{21}-\frac{7\times 7x}{21}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 3 is 21. Multiply \frac{3}{7} times \frac{3}{3}. Multiply \frac{7x}{3} times \frac{7}{7}.
\frac{3\times 3-7\times 7x}{21}
Since \frac{3\times 3}{21} and \frac{7\times 7x}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{9-49x}{21}
Do the multiplications in 3\times 3-7\times 7x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}