Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(4+\sqrt{13}\right)}{\left(4-\sqrt{13}\right)\left(4+\sqrt{13}\right)}-\frac{6}{\sqrt{13}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Rationalize the denominator of \frac{3}{4-\sqrt{13}} by multiplying numerator and denominator by 4+\sqrt{13}.
\frac{3\left(4+\sqrt{13}\right)}{4^{2}-\left(\sqrt{13}\right)^{2}}-\frac{6}{\sqrt{13}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Consider \left(4-\sqrt{13}\right)\left(4+\sqrt{13}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(4+\sqrt{13}\right)}{16-13}-\frac{6}{\sqrt{13}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Square 4. Square \sqrt{13}.
\frac{3\left(4+\sqrt{13}\right)}{3}-\frac{6}{\sqrt{13}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Subtract 13 from 16 to get 3.
4+\sqrt{13}-\frac{6}{\sqrt{13}-\sqrt{7}}-\frac{2}{3+\sqrt{7}}
Cancel out 3 and 3.
4+\sqrt{13}-\frac{6\left(\sqrt{13}+\sqrt{7}\right)}{\left(\sqrt{13}-\sqrt{7}\right)\left(\sqrt{13}+\sqrt{7}\right)}-\frac{2}{3+\sqrt{7}}
Rationalize the denominator of \frac{6}{\sqrt{13}-\sqrt{7}} by multiplying numerator and denominator by \sqrt{13}+\sqrt{7}.
4+\sqrt{13}-\frac{6\left(\sqrt{13}+\sqrt{7}\right)}{\left(\sqrt{13}\right)^{2}-\left(\sqrt{7}\right)^{2}}-\frac{2}{3+\sqrt{7}}
Consider \left(\sqrt{13}-\sqrt{7}\right)\left(\sqrt{13}+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{13}-\frac{6\left(\sqrt{13}+\sqrt{7}\right)}{13-7}-\frac{2}{3+\sqrt{7}}
Square \sqrt{13}. Square \sqrt{7}.
4+\sqrt{13}-\frac{6\left(\sqrt{13}+\sqrt{7}\right)}{6}-\frac{2}{3+\sqrt{7}}
Subtract 7 from 13 to get 6.
4+\sqrt{13}-\left(\sqrt{13}+\sqrt{7}\right)-\frac{2}{3+\sqrt{7}}
Cancel out 6 and 6.
4+\sqrt{13}-\sqrt{13}-\sqrt{7}-\frac{2}{3+\sqrt{7}}
To find the opposite of \sqrt{13}+\sqrt{7}, find the opposite of each term.
4-\sqrt{7}-\frac{2}{3+\sqrt{7}}
Combine \sqrt{13} and -\sqrt{13} to get 0.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}
Rationalize the denominator of \frac{2}{3+\sqrt{7}} by multiplying numerator and denominator by 3-\sqrt{7}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{9-7}
Square 3. Square \sqrt{7}.
4-\sqrt{7}-\frac{2\left(3-\sqrt{7}\right)}{2}
Subtract 7 from 9 to get 2.
4-\sqrt{7}-\left(3-\sqrt{7}\right)
Cancel out 2 and 2.
4-\sqrt{7}-3-\left(-\sqrt{7}\right)
To find the opposite of 3-\sqrt{7}, find the opposite of each term.
4-\sqrt{7}-3+\sqrt{7}
The opposite of -\sqrt{7} is \sqrt{7}.
1-\sqrt{7}+\sqrt{7}
Subtract 3 from 4 to get 1.
1
Combine -\sqrt{7} and \sqrt{7} to get 0.