Evaluate
-\frac{16125}{4}=-4031.25
Factor
-\frac{16125}{4} = -4031\frac{1}{4} = -4031.25
Share
Copied to clipboard
\frac{3}{4}-2\times 3^{2}\times 4^{3}-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Calculate 2 to the power of 1 and get 2.
\frac{3}{4}-2\times 9\times 4^{3}-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Calculate 3 to the power of 2 and get 9.
\frac{3}{4}-18\times 4^{3}-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Multiply 2 and 9 to get 18.
\frac{3}{4}-18\times 64-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Calculate 4 to the power of 3 and get 64.
\frac{3}{4}-1152-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Multiply 18 and 64 to get 1152.
\frac{3}{4}-\frac{4608}{4}-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Convert 1152 to fraction \frac{4608}{4}.
\frac{3-4608}{4}-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Since \frac{3}{4} and \frac{4608}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{4605}{4}-\left(-2^{2}\right)\times 3^{3}\times 4^{2}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Subtract 4608 from 3 to get -4605.
-\frac{4605}{4}-\left(-4\times 3^{3}\times 4^{2}\right)+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Calculate 2 to the power of 2 and get 4.
-\frac{4605}{4}-\left(-4\times 27\times 4^{2}\right)+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Calculate 3 to the power of 3 and get 27.
-\frac{4605}{4}-\left(-108\times 4^{2}\right)+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Multiply -4 and 27 to get -108.
-\frac{4605}{4}-\left(-108\times 16\right)+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Calculate 4 to the power of 2 and get 16.
-\frac{4605}{4}-\left(-1728\right)+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Multiply -108 and 16 to get -1728.
-\frac{4605}{4}+1728+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
The opposite of -1728 is 1728.
-\frac{4605}{4}+\frac{6912}{4}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Convert 1728 to fraction \frac{6912}{4}.
\frac{-4605+6912}{4}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Since -\frac{4605}{4} and \frac{6912}{4} have the same denominator, add them by adding their numerators.
\frac{2307}{4}+\left(-2^{3}\right)\times 3^{2}\times 4^{3}
Add -4605 and 6912 to get 2307.
\frac{2307}{4}-8\times 3^{2}\times 4^{3}
Calculate 2 to the power of 3 and get 8.
\frac{2307}{4}-8\times 9\times 4^{3}
Calculate 3 to the power of 2 and get 9.
\frac{2307}{4}-72\times 4^{3}
Multiply -8 and 9 to get -72.
\frac{2307}{4}-72\times 64
Calculate 4 to the power of 3 and get 64.
\frac{2307}{4}-4608
Multiply -72 and 64 to get -4608.
\frac{2307}{4}-\frac{18432}{4}
Convert 4608 to fraction \frac{18432}{4}.
\frac{2307-18432}{4}
Since \frac{2307}{4} and \frac{18432}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{16125}{4}
Subtract 18432 from 2307 to get -16125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}