Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9+12\left(\frac{3}{2}-\frac{2x}{\sqrt{3}}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Multiply both sides of the equation by 12, the least common multiple of 4,3.
9+12\left(\frac{3}{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Rationalize the denominator of \frac{2x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
9+12\left(\frac{3}{2}-\frac{2x\sqrt{3}}{3}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
The square of \sqrt{3} is 3.
9+12\left(\frac{3\times 3}{6}-\frac{2\times 2x\sqrt{3}}{6}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{3}{2} times \frac{3}{3}. Multiply \frac{2x\sqrt{3}}{3} times \frac{2}{2}.
9+12\times \left(\frac{3\times 3-2\times 2x\sqrt{3}}{6}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Since \frac{3\times 3}{6} and \frac{2\times 2x\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
9+12\times \left(\frac{9-4x\sqrt{3}}{6}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Do the multiplications in 3\times 3-2\times 2x\sqrt{3}.
9+12\times \frac{\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
To raise \frac{9-4x\sqrt{3}}{6} to a power, raise both numerator and denominator to the power and then divide.
9+\frac{12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Express 12\times \frac{\left(9-4x\sqrt{3}\right)^{2}}{6^{2}} as a single fraction.
\frac{9\times 6^{2}}{6^{2}}+\frac{12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{6^{2}}{6^{2}}.
\frac{9\times 6^{2}+12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Since \frac{9\times 6^{2}}{6^{2}} and \frac{12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}} have the same denominator, add them by adding their numerators.
\frac{324+972-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Do the multiplications in 9\times 6^{2}+12\left(9-4x\sqrt{3}\right)^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Combine like terms in 324+972-864x\sqrt{3}+576x^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}x+x^{2}\right)+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-x\right)^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(3-2\sqrt{3}x+x^{2}\right)+4x^{2}
The square of \sqrt{3} is 3.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=36-24\sqrt{3}x+12x^{2}+4x^{2}
Use the distributive property to multiply 12 by 3-2\sqrt{3}x+x^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=36-24\sqrt{3}x+16x^{2}
Combine 12x^{2} and 4x^{2} to get 16x^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}=36-24\sqrt{3}x+16x^{2}
Calculate 6 to the power of 2 and get 36.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}-36=-24\sqrt{3}x+16x^{2}
Subtract 36 from both sides.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}-36+24\sqrt{3}x=16x^{2}
Add 24\sqrt{3}x to both sides.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}-36+24\sqrt{3}x-16x^{2}=0
Subtract 16x^{2} from both sides.
1296-864x\sqrt{3}+576x^{2}-1296+864\sqrt{3}x-576x^{2}=0
Multiply both sides of the equation by 36.
-576x^{2}+576x^{2}+864\sqrt{3}x-864\sqrt{3}x+1296-1296=0
Reorder the terms.
864\sqrt{3}x-864\sqrt{3}x+1296-1296=0
Combine -576x^{2} and 576x^{2} to get 0.
1296-1296=0
Combine 864\sqrt{3}x and -864\sqrt{3}x to get 0.
0=0
Subtract 1296 from 1296 to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
9+12\left(\frac{3}{2}-\frac{2x}{\sqrt{3}}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Multiply both sides of the equation by 12, the least common multiple of 4,3.
9+12\left(\frac{3}{2}-\frac{2x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Rationalize the denominator of \frac{2x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
9+12\left(\frac{3}{2}-\frac{2x\sqrt{3}}{3}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
The square of \sqrt{3} is 3.
9+12\left(\frac{3\times 3}{6}-\frac{2\times 2x\sqrt{3}}{6}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{3}{2} times \frac{3}{3}. Multiply \frac{2x\sqrt{3}}{3} times \frac{2}{2}.
9+12\times \left(\frac{3\times 3-2\times 2x\sqrt{3}}{6}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Since \frac{3\times 3}{6} and \frac{2\times 2x\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
9+12\times \left(\frac{9-4x\sqrt{3}}{6}\right)^{2}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Do the multiplications in 3\times 3-2\times 2x\sqrt{3}.
9+12\times \frac{\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
To raise \frac{9-4x\sqrt{3}}{6} to a power, raise both numerator and denominator to the power and then divide.
9+\frac{12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Express 12\times \frac{\left(9-4x\sqrt{3}\right)^{2}}{6^{2}} as a single fraction.
\frac{9\times 6^{2}}{6^{2}}+\frac{12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{6^{2}}{6^{2}}.
\frac{9\times 6^{2}+12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Since \frac{9\times 6^{2}}{6^{2}} and \frac{12\left(9-4x\sqrt{3}\right)^{2}}{6^{2}} have the same denominator, add them by adding their numerators.
\frac{324+972-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Do the multiplications in 9\times 6^{2}+12\left(9-4x\sqrt{3}\right)^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(\sqrt{3}-x\right)^{2}+4x^{2}
Combine like terms in 324+972-864x\sqrt{3}+576x^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}x+x^{2}\right)+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-x\right)^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=12\left(3-2\sqrt{3}x+x^{2}\right)+4x^{2}
The square of \sqrt{3} is 3.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=36-24\sqrt{3}x+12x^{2}+4x^{2}
Use the distributive property to multiply 12 by 3-2\sqrt{3}x+x^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{6^{2}}=36-24\sqrt{3}x+16x^{2}
Combine 12x^{2} and 4x^{2} to get 16x^{2}.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}=36-24\sqrt{3}x+16x^{2}
Calculate 6 to the power of 2 and get 36.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}-36=-24\sqrt{3}x+16x^{2}
Subtract 36 from both sides.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}-36+24\sqrt{3}x=16x^{2}
Add 24\sqrt{3}x to both sides.
\frac{1296-864x\sqrt{3}+576x^{2}}{36}-36+24\sqrt{3}x-16x^{2}=0
Subtract 16x^{2} from both sides.
1296-864x\sqrt{3}+576x^{2}-1296+864\sqrt{3}x-576x^{2}=0
Multiply both sides of the equation by 36.
-576x^{2}+576x^{2}+864\sqrt{3}x-864\sqrt{3}x+1296-1296=0
Reorder the terms.
864\sqrt{3}x-864\sqrt{3}x+1296-1296=0
Combine -576x^{2} and 576x^{2} to get 0.
1296-1296=0
Combine 864\sqrt{3}x and -864\sqrt{3}x to get 0.
0=0
Subtract 1296 from 1296 to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.