Evaluate
\frac{989}{396}\approx 2.497474747
Factor
\frac{23 \cdot 43}{2 ^ {2} \cdot 3 ^ {2} \cdot 11} = 2\frac{197}{396} = 2.4974747474747474
Share
Copied to clipboard
\frac{3}{4}\times \frac{\frac{2+1}{3}}{\frac{3}{5}-\frac{2}{7}}+\frac{1}{9}
Since \frac{2}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{3}{4}\times \frac{\frac{3}{3}}{\frac{3}{5}-\frac{2}{7}}+\frac{1}{9}
Add 2 and 1 to get 3.
\frac{3}{4}\times \frac{1}{\frac{3}{5}-\frac{2}{7}}+\frac{1}{9}
Divide 3 by 3 to get 1.
\frac{3}{4}\times \frac{1}{\frac{21}{35}-\frac{10}{35}}+\frac{1}{9}
Least common multiple of 5 and 7 is 35. Convert \frac{3}{5} and \frac{2}{7} to fractions with denominator 35.
\frac{3}{4}\times \frac{1}{\frac{21-10}{35}}+\frac{1}{9}
Since \frac{21}{35} and \frac{10}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}\times \frac{1}{\frac{11}{35}}+\frac{1}{9}
Subtract 10 from 21 to get 11.
\frac{3}{4}\times 1\times \frac{35}{11}+\frac{1}{9}
Divide 1 by \frac{11}{35} by multiplying 1 by the reciprocal of \frac{11}{35}.
\frac{3}{4}\times \frac{35}{11}+\frac{1}{9}
Multiply 1 and \frac{35}{11} to get \frac{35}{11}.
\frac{3\times 35}{4\times 11}+\frac{1}{9}
Multiply \frac{3}{4} times \frac{35}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{105}{44}+\frac{1}{9}
Do the multiplications in the fraction \frac{3\times 35}{4\times 11}.
\frac{945}{396}+\frac{44}{396}
Least common multiple of 44 and 9 is 396. Convert \frac{105}{44} and \frac{1}{9} to fractions with denominator 396.
\frac{945+44}{396}
Since \frac{945}{396} and \frac{44}{396} have the same denominator, add them by adding their numerators.
\frac{989}{396}
Add 945 and 44 to get 989.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}