Solve for n
n=\frac{\sqrt{906}}{75}+\frac{157}{150}\approx 1.447997785
Share
Copied to clipboard
-\frac{3}{5}\sqrt{n}=1.45-\frac{3}{2}n
Subtract \frac{3}{2}n from both sides of the equation.
\left(-\frac{3}{5}\sqrt{n}\right)^{2}=\left(1.45-\frac{3}{2}n\right)^{2}
Square both sides of the equation.
\left(-\frac{3}{5}\right)^{2}\left(\sqrt{n}\right)^{2}=\left(1.45-\frac{3}{2}n\right)^{2}
Expand \left(-\frac{3}{5}\sqrt{n}\right)^{2}.
\frac{9}{25}\left(\sqrt{n}\right)^{2}=\left(1.45-\frac{3}{2}n\right)^{2}
Calculate -\frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{9}{25}n=\left(1.45-\frac{3}{2}n\right)^{2}
Calculate \sqrt{n} to the power of 2 and get n.
\frac{9}{25}n=2.1025-\frac{87}{20}n+\frac{9}{4}n^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1.45-\frac{3}{2}n\right)^{2}.
\frac{9}{25}n-2.1025=-\frac{87}{20}n+\frac{9}{4}n^{2}
Subtract 2.1025 from both sides.
\frac{9}{25}n-2.1025+\frac{87}{20}n=\frac{9}{4}n^{2}
Add \frac{87}{20}n to both sides.
\frac{471}{100}n-2.1025=\frac{9}{4}n^{2}
Combine \frac{9}{25}n and \frac{87}{20}n to get \frac{471}{100}n.
\frac{471}{100}n-2.1025-\frac{9}{4}n^{2}=0
Subtract \frac{9}{4}n^{2} from both sides.
-\frac{9}{4}n^{2}+\frac{471}{100}n-2.1025=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\frac{471}{100}±\sqrt{\left(\frac{471}{100}\right)^{2}-4\left(-\frac{9}{4}\right)\left(-2.1025\right)}}{2\left(-\frac{9}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{9}{4} for a, \frac{471}{100} for b, and -2.1025 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\frac{471}{100}±\sqrt{\frac{221841}{10000}-4\left(-\frac{9}{4}\right)\left(-2.1025\right)}}{2\left(-\frac{9}{4}\right)}
Square \frac{471}{100} by squaring both the numerator and the denominator of the fraction.
n=\frac{-\frac{471}{100}±\sqrt{\frac{221841}{10000}+9\left(-2.1025\right)}}{2\left(-\frac{9}{4}\right)}
Multiply -4 times -\frac{9}{4}.
n=\frac{-\frac{471}{100}±\sqrt{\frac{221841}{10000}-18.9225}}{2\left(-\frac{9}{4}\right)}
Multiply 9 times -2.1025.
n=\frac{-\frac{471}{100}±\sqrt{\frac{4077}{1250}}}{2\left(-\frac{9}{4}\right)}
Add \frac{221841}{10000} to -18.9225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=\frac{-\frac{471}{100}±\frac{3\sqrt{906}}{50}}{2\left(-\frac{9}{4}\right)}
Take the square root of \frac{4077}{1250}.
n=\frac{-\frac{471}{100}±\frac{3\sqrt{906}}{50}}{-\frac{9}{2}}
Multiply 2 times -\frac{9}{4}.
n=\frac{\frac{3\sqrt{906}}{50}-\frac{471}{100}}{-\frac{9}{2}}
Now solve the equation n=\frac{-\frac{471}{100}±\frac{3\sqrt{906}}{50}}{-\frac{9}{2}} when ± is plus. Add -\frac{471}{100} to \frac{3\sqrt{906}}{50}.
n=-\frac{\sqrt{906}}{75}+\frac{157}{150}
Divide -\frac{471}{100}+\frac{3\sqrt{906}}{50} by -\frac{9}{2} by multiplying -\frac{471}{100}+\frac{3\sqrt{906}}{50} by the reciprocal of -\frac{9}{2}.
n=\frac{-\frac{3\sqrt{906}}{50}-\frac{471}{100}}{-\frac{9}{2}}
Now solve the equation n=\frac{-\frac{471}{100}±\frac{3\sqrt{906}}{50}}{-\frac{9}{2}} when ± is minus. Subtract \frac{3\sqrt{906}}{50} from -\frac{471}{100}.
n=\frac{\sqrt{906}}{75}+\frac{157}{150}
Divide -\frac{471}{100}-\frac{3\sqrt{906}}{50} by -\frac{9}{2} by multiplying -\frac{471}{100}-\frac{3\sqrt{906}}{50} by the reciprocal of -\frac{9}{2}.
n=-\frac{\sqrt{906}}{75}+\frac{157}{150} n=\frac{\sqrt{906}}{75}+\frac{157}{150}
The equation is now solved.
\frac{3}{2}\left(-\frac{\sqrt{906}}{75}+\frac{157}{150}\right)+\frac{-3}{5}\sqrt{-\frac{\sqrt{906}}{75}+\frac{157}{150}}=1.45
Substitute -\frac{\sqrt{906}}{75}+\frac{157}{150} for n in the equation \frac{3}{2}n+\frac{-3}{5}\sqrt{n}=1.45.
-\frac{1}{25}\times 906^{\frac{1}{2}}+\frac{169}{100}=1.45
Simplify. The value n=-\frac{\sqrt{906}}{75}+\frac{157}{150} does not satisfy the equation.
\frac{3}{2}\left(\frac{\sqrt{906}}{75}+\frac{157}{150}\right)+\frac{-3}{5}\sqrt{\frac{\sqrt{906}}{75}+\frac{157}{150}}=1.45
Substitute \frac{\sqrt{906}}{75}+\frac{157}{150} for n in the equation \frac{3}{2}n+\frac{-3}{5}\sqrt{n}=1.45.
\frac{29}{20}=1.45
Simplify. The value n=\frac{\sqrt{906}}{75}+\frac{157}{150} satisfies the equation.
n=\frac{\sqrt{906}}{75}+\frac{157}{150}
Equation -\frac{3\sqrt{n}}{5}=-\frac{3n}{2}+1.45 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}