Solve for x
x<-4
Graph
Share
Copied to clipboard
\frac{3}{2}x+\frac{3}{2}\left(-2\right)<\frac{3}{4}\left(x-8\right)
Use the distributive property to multiply \frac{3}{2} by x-2.
\frac{3}{2}x+\frac{3\left(-2\right)}{2}<\frac{3}{4}\left(x-8\right)
Express \frac{3}{2}\left(-2\right) as a single fraction.
\frac{3}{2}x+\frac{-6}{2}<\frac{3}{4}\left(x-8\right)
Multiply 3 and -2 to get -6.
\frac{3}{2}x-3<\frac{3}{4}\left(x-8\right)
Divide -6 by 2 to get -3.
\frac{3}{2}x-3<\frac{3}{4}x+\frac{3}{4}\left(-8\right)
Use the distributive property to multiply \frac{3}{4} by x-8.
\frac{3}{2}x-3<\frac{3}{4}x+\frac{3\left(-8\right)}{4}
Express \frac{3}{4}\left(-8\right) as a single fraction.
\frac{3}{2}x-3<\frac{3}{4}x+\frac{-24}{4}
Multiply 3 and -8 to get -24.
\frac{3}{2}x-3<\frac{3}{4}x-6
Divide -24 by 4 to get -6.
\frac{3}{2}x-3-\frac{3}{4}x<-6
Subtract \frac{3}{4}x from both sides.
\frac{3}{4}x-3<-6
Combine \frac{3}{2}x and -\frac{3}{4}x to get \frac{3}{4}x.
\frac{3}{4}x<-6+3
Add 3 to both sides.
\frac{3}{4}x<-3
Add -6 and 3 to get -3.
x<-3\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}. Since \frac{3}{4} is positive, the inequality direction remains the same.
x<-4
Multiply -3 times \frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}