Solve for n
n=\sqrt{10}+1\approx 4.16227766
n=1-\sqrt{10}\approx -2.16227766
Share
Copied to clipboard
3\times 3=n\left(n-4\right)+n\times 2
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n^{3}, the least common multiple of n^{3},3n^{2}.
9=n\left(n-4\right)+n\times 2
Multiply 3 and 3 to get 9.
9=n^{2}-4n+n\times 2
Use the distributive property to multiply n by n-4.
9=n^{2}-2n
Combine -4n and n\times 2 to get -2n.
n^{2}-2n=9
Swap sides so that all variable terms are on the left hand side.
n^{2}-2n-9=0
Subtract 9 from both sides.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
Square -2.
n=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
Multiply -4 times -9.
n=\frac{-\left(-2\right)±\sqrt{40}}{2}
Add 4 to 36.
n=\frac{-\left(-2\right)±2\sqrt{10}}{2}
Take the square root of 40.
n=\frac{2±2\sqrt{10}}{2}
The opposite of -2 is 2.
n=\frac{2\sqrt{10}+2}{2}
Now solve the equation n=\frac{2±2\sqrt{10}}{2} when ± is plus. Add 2 to 2\sqrt{10}.
n=\sqrt{10}+1
Divide 2+2\sqrt{10} by 2.
n=\frac{2-2\sqrt{10}}{2}
Now solve the equation n=\frac{2±2\sqrt{10}}{2} when ± is minus. Subtract 2\sqrt{10} from 2.
n=1-\sqrt{10}
Divide 2-2\sqrt{10} by 2.
n=\sqrt{10}+1 n=1-\sqrt{10}
The equation is now solved.
3\times 3=n\left(n-4\right)+n\times 2
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n^{3}, the least common multiple of n^{3},3n^{2}.
9=n\left(n-4\right)+n\times 2
Multiply 3 and 3 to get 9.
9=n^{2}-4n+n\times 2
Use the distributive property to multiply n by n-4.
9=n^{2}-2n
Combine -4n and n\times 2 to get -2n.
n^{2}-2n=9
Swap sides so that all variable terms are on the left hand side.
n^{2}-2n+1=9+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-2n+1=10
Add 9 to 1.
\left(n-1\right)^{2}=10
Factor n^{2}-2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-1\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
n-1=\sqrt{10} n-1=-\sqrt{10}
Simplify.
n=\sqrt{10}+1 n=1-\sqrt{10}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}