Solve for n
n = \frac{4119474}{316883} = 12\frac{316878}{316883} \approx 12.999984221
Share
Copied to clipboard
1901298\times 3=633766\left(n-4\right)+633766\times 2\times \frac{5}{633766}
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1901298n^{2}, the least common multiple of n^{2},3n^{2},633766.
5703894=633766\left(n-4\right)+633766\times 2\times \frac{5}{633766}
Multiply 1901298 and 3 to get 5703894.
5703894=633766n-2535064+633766\times 2\times \frac{5}{633766}
Use the distributive property to multiply 633766 by n-4.
5703894=633766n-2535064+1267532\times \frac{5}{633766}
Multiply 633766 and 2 to get 1267532.
5703894=633766n-2535064+10
Multiply 1267532 and \frac{5}{633766} to get 10.
5703894=633766n-2535054
Add -2535064 and 10 to get -2535054.
633766n-2535054=5703894
Swap sides so that all variable terms are on the left hand side.
633766n=5703894+2535054
Add 2535054 to both sides.
633766n=8238948
Add 5703894 and 2535054 to get 8238948.
n=\frac{8238948}{633766}
Divide both sides by 633766.
n=\frac{4119474}{316883}
Reduce the fraction \frac{8238948}{633766} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}