Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2y+8}{\left(y-2\right)^{2}}-\frac{7}{y-2}
Factor y^{2}-4y+4.
\frac{2y+8}{\left(y-2\right)^{2}}-\frac{7\left(y-2\right)}{\left(y-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-2\right)^{2} and y-2 is \left(y-2\right)^{2}. Multiply \frac{7}{y-2} times \frac{y-2}{y-2}.
\frac{2y+8-7\left(y-2\right)}{\left(y-2\right)^{2}}
Since \frac{2y+8}{\left(y-2\right)^{2}} and \frac{7\left(y-2\right)}{\left(y-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2y+8-7y+14}{\left(y-2\right)^{2}}
Do the multiplications in 2y+8-7\left(y-2\right).
\frac{-5y+22}{\left(y-2\right)^{2}}
Combine like terms in 2y+8-7y+14.
\frac{-5y+22}{y^{2}-4y+4}
Expand \left(y-2\right)^{2}.
\frac{2y+8}{\left(y-2\right)^{2}}-\frac{7}{y-2}
Factor y^{2}-4y+4.
\frac{2y+8}{\left(y-2\right)^{2}}-\frac{7\left(y-2\right)}{\left(y-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-2\right)^{2} and y-2 is \left(y-2\right)^{2}. Multiply \frac{7}{y-2} times \frac{y-2}{y-2}.
\frac{2y+8-7\left(y-2\right)}{\left(y-2\right)^{2}}
Since \frac{2y+8}{\left(y-2\right)^{2}} and \frac{7\left(y-2\right)}{\left(y-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2y+8-7y+14}{\left(y-2\right)^{2}}
Do the multiplications in 2y+8-7\left(y-2\right).
\frac{-5y+22}{\left(y-2\right)^{2}}
Combine like terms in 2y+8-7y+14.
\frac{-5y+22}{y^{2}-4y+4}
Expand \left(y-2\right)^{2}.