Solve for x (complex solution)
x=\frac{-\sqrt{5}i+3}{2}\approx 1.5-1.118033989i
x=\frac{3+\sqrt{5}i}{2}\approx 1.5+1.118033989i
Graph
Share
Copied to clipboard
\left(4x+1\right)\left(2x-5\right)=\left(3x-3\right)\left(6x-10\right)
Variable x cannot be equal to any of the values -\frac{1}{4},1 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-1\right)\left(4x+1\right), the least common multiple of 3x-3,4x+1.
8x^{2}-18x-5=\left(3x-3\right)\left(6x-10\right)
Use the distributive property to multiply 4x+1 by 2x-5 and combine like terms.
8x^{2}-18x-5=18x^{2}-48x+30
Use the distributive property to multiply 3x-3 by 6x-10 and combine like terms.
8x^{2}-18x-5-18x^{2}=-48x+30
Subtract 18x^{2} from both sides.
-10x^{2}-18x-5=-48x+30
Combine 8x^{2} and -18x^{2} to get -10x^{2}.
-10x^{2}-18x-5+48x=30
Add 48x to both sides.
-10x^{2}+30x-5=30
Combine -18x and 48x to get 30x.
-10x^{2}+30x-5-30=0
Subtract 30 from both sides.
-10x^{2}+30x-35=0
Subtract 30 from -5 to get -35.
x=\frac{-30±\sqrt{30^{2}-4\left(-10\right)\left(-35\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 30 for b, and -35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-10\right)\left(-35\right)}}{2\left(-10\right)}
Square 30.
x=\frac{-30±\sqrt{900+40\left(-35\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-30±\sqrt{900-1400}}{2\left(-10\right)}
Multiply 40 times -35.
x=\frac{-30±\sqrt{-500}}{2\left(-10\right)}
Add 900 to -1400.
x=\frac{-30±10\sqrt{5}i}{2\left(-10\right)}
Take the square root of -500.
x=\frac{-30±10\sqrt{5}i}{-20}
Multiply 2 times -10.
x=\frac{-30+10\sqrt{5}i}{-20}
Now solve the equation x=\frac{-30±10\sqrt{5}i}{-20} when ± is plus. Add -30 to 10i\sqrt{5}.
x=\frac{-\sqrt{5}i+3}{2}
Divide -30+10i\sqrt{5} by -20.
x=\frac{-10\sqrt{5}i-30}{-20}
Now solve the equation x=\frac{-30±10\sqrt{5}i}{-20} when ± is minus. Subtract 10i\sqrt{5} from -30.
x=\frac{3+\sqrt{5}i}{2}
Divide -30-10i\sqrt{5} by -20.
x=\frac{-\sqrt{5}i+3}{2} x=\frac{3+\sqrt{5}i}{2}
The equation is now solved.
\left(4x+1\right)\left(2x-5\right)=\left(3x-3\right)\left(6x-10\right)
Variable x cannot be equal to any of the values -\frac{1}{4},1 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-1\right)\left(4x+1\right), the least common multiple of 3x-3,4x+1.
8x^{2}-18x-5=\left(3x-3\right)\left(6x-10\right)
Use the distributive property to multiply 4x+1 by 2x-5 and combine like terms.
8x^{2}-18x-5=18x^{2}-48x+30
Use the distributive property to multiply 3x-3 by 6x-10 and combine like terms.
8x^{2}-18x-5-18x^{2}=-48x+30
Subtract 18x^{2} from both sides.
-10x^{2}-18x-5=-48x+30
Combine 8x^{2} and -18x^{2} to get -10x^{2}.
-10x^{2}-18x-5+48x=30
Add 48x to both sides.
-10x^{2}+30x-5=30
Combine -18x and 48x to get 30x.
-10x^{2}+30x=30+5
Add 5 to both sides.
-10x^{2}+30x=35
Add 30 and 5 to get 35.
\frac{-10x^{2}+30x}{-10}=\frac{35}{-10}
Divide both sides by -10.
x^{2}+\frac{30}{-10}x=\frac{35}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-3x=\frac{35}{-10}
Divide 30 by -10.
x^{2}-3x=-\frac{7}{2}
Reduce the fraction \frac{35}{-10} to lowest terms by extracting and canceling out 5.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{7}{2}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{7}{2}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=-\frac{5}{4}
Add -\frac{7}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=-\frac{5}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{5}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{5}i}{2} x-\frac{3}{2}=-\frac{\sqrt{5}i}{2}
Simplify.
x=\frac{3+\sqrt{5}i}{2} x=\frac{-\sqrt{5}i+3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}