Solve for x
x=\frac{\sqrt{21}-5}{2}\approx -0.208712153
x=\frac{-\sqrt{21}-5}{2}\approx -4.791287847
Graph
Share
Copied to clipboard
\left(2x+1\right)\left(2x-1\right)-x\left(x+3\right)=2x\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{1}{2},0 since division by zero is not defined. Multiply both sides of the equation by x\left(2x+1\right), the least common multiple of x,2x+1.
\left(2x\right)^{2}-1-x\left(x+3\right)=2x\left(2x+1\right)
Consider \left(2x+1\right)\left(2x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1-x\left(x+3\right)=2x\left(2x+1\right)
Expand \left(2x\right)^{2}.
4x^{2}-1-x\left(x+3\right)=2x\left(2x+1\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-1-\left(x^{2}+3x\right)=2x\left(2x+1\right)
Use the distributive property to multiply x by x+3.
4x^{2}-1-x^{2}-3x=2x\left(2x+1\right)
To find the opposite of x^{2}+3x, find the opposite of each term.
3x^{2}-1-3x=2x\left(2x+1\right)
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-1-3x=4x^{2}+2x
Use the distributive property to multiply 2x by 2x+1.
3x^{2}-1-3x-4x^{2}=2x
Subtract 4x^{2} from both sides.
-x^{2}-1-3x=2x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-1-3x-2x=0
Subtract 2x from both sides.
-x^{2}-1-5x=0
Combine -3x and -2x to get -5x.
-x^{2}-5x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{25-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-\left(-5\right)±\sqrt{21}}{2\left(-1\right)}
Add 25 to -4.
x=\frac{5±\sqrt{21}}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{21}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{21}}{-2} when ± is plus. Add 5 to \sqrt{21}.
x=\frac{-\sqrt{21}-5}{2}
Divide 5+\sqrt{21} by -2.
x=\frac{5-\sqrt{21}}{-2}
Now solve the equation x=\frac{5±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from 5.
x=\frac{\sqrt{21}-5}{2}
Divide 5-\sqrt{21} by -2.
x=\frac{-\sqrt{21}-5}{2} x=\frac{\sqrt{21}-5}{2}
The equation is now solved.
\left(2x+1\right)\left(2x-1\right)-x\left(x+3\right)=2x\left(2x+1\right)
Variable x cannot be equal to any of the values -\frac{1}{2},0 since division by zero is not defined. Multiply both sides of the equation by x\left(2x+1\right), the least common multiple of x,2x+1.
\left(2x\right)^{2}-1-x\left(x+3\right)=2x\left(2x+1\right)
Consider \left(2x+1\right)\left(2x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1-x\left(x+3\right)=2x\left(2x+1\right)
Expand \left(2x\right)^{2}.
4x^{2}-1-x\left(x+3\right)=2x\left(2x+1\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-1-\left(x^{2}+3x\right)=2x\left(2x+1\right)
Use the distributive property to multiply x by x+3.
4x^{2}-1-x^{2}-3x=2x\left(2x+1\right)
To find the opposite of x^{2}+3x, find the opposite of each term.
3x^{2}-1-3x=2x\left(2x+1\right)
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-1-3x=4x^{2}+2x
Use the distributive property to multiply 2x by 2x+1.
3x^{2}-1-3x-4x^{2}=2x
Subtract 4x^{2} from both sides.
-x^{2}-1-3x=2x
Combine 3x^{2} and -4x^{2} to get -x^{2}.
-x^{2}-1-3x-2x=0
Subtract 2x from both sides.
-x^{2}-1-5x=0
Combine -3x and -2x to get -5x.
-x^{2}-5x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{-x^{2}-5x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{5}{-1}\right)x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+5x=\frac{1}{-1}
Divide -5 by -1.
x^{2}+5x=-1
Divide 1 by -1.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-1+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-1+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{21}{4}
Add -1 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{21}}{2} x+\frac{5}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}-5}{2} x=\frac{-\sqrt{21}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}