Solve for x
x\in \left(-\infty,-\frac{21}{13}\right)\cup \left(-\frac{4}{3},\infty\right)
Graph
Share
Copied to clipboard
3x+4>0 3x+4<0
Denominator 3x+4 cannot be zero since division by zero is not defined. There are two cases.
3x>-4
Consider the case when 3x+4 is positive. Move 4 to the right hand side.
x>-\frac{4}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
2x-1<5\left(3x+4\right)
The initial inequality does not change the direction when multiplied by 3x+4 for 3x+4>0.
2x-1<15x+20
Multiply out the right hand side.
2x-15x<1+20
Move the terms containing x to the left hand side and all other terms to the right hand side.
-13x<21
Combine like terms.
x>-\frac{21}{13}
Divide both sides by -13. Since -13 is negative, the inequality direction is changed.
x>-\frac{4}{3}
Consider condition x>-\frac{4}{3} specified above.
3x<-4
Now consider the case when 3x+4 is negative. Move 4 to the right hand side.
x<-\frac{4}{3}
Divide both sides by 3. Since 3 is positive, the inequality direction remains the same.
2x-1>5\left(3x+4\right)
The initial inequality changes the direction when multiplied by 3x+4 for 3x+4<0.
2x-1>15x+20
Multiply out the right hand side.
2x-15x>1+20
Move the terms containing x to the left hand side and all other terms to the right hand side.
-13x>21
Combine like terms.
x<-\frac{21}{13}
Divide both sides by -13. Since -13 is negative, the inequality direction is changed.
x<-\frac{21}{13}
Consider condition x<-\frac{4}{3} specified above. The result remains the same.
x\in \left(-\infty,-\frac{21}{13}\right)\cup \left(-\frac{4}{3},\infty\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}