Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
\left(x+2\right)\left(2x-1\right)=\left(2x+1\right)\left(x+3\right)
Variable x cannot be equal to any of the values -2,-\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(2x+1\right), the least common multiple of 2x+1,x+2.
2x^{2}+3x-2=\left(2x+1\right)\left(x+3\right)
Use the distributive property to multiply x+2 by 2x-1 and combine like terms.
2x^{2}+3x-2=2x^{2}+7x+3
Use the distributive property to multiply 2x+1 by x+3 and combine like terms.
2x^{2}+3x-2-2x^{2}=7x+3
Subtract 2x^{2} from both sides.
3x-2=7x+3
Combine 2x^{2} and -2x^{2} to get 0.
3x-2-7x=3
Subtract 7x from both sides.
-4x-2=3
Combine 3x and -7x to get -4x.
-4x=3+2
Add 2 to both sides.
-4x=5
Add 3 and 2 to get 5.
x=\frac{5}{-4}
Divide both sides by -4.
x=-\frac{5}{4}
Fraction \frac{5}{-4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}