Solve for x
x<-\frac{11}{14}
Graph
Share
Copied to clipboard
6\left(2x-1\right)-4\left(2x+5\right)>3\left(6x-1\right)-12
Multiply both sides of the equation by 12, the least common multiple of 2,3,4. Since 12 is positive, the inequality direction remains the same.
12x-6-4\left(2x+5\right)>3\left(6x-1\right)-12
Use the distributive property to multiply 6 by 2x-1.
12x-6-8x-20>3\left(6x-1\right)-12
Use the distributive property to multiply -4 by 2x+5.
4x-6-20>3\left(6x-1\right)-12
Combine 12x and -8x to get 4x.
4x-26>3\left(6x-1\right)-12
Subtract 20 from -6 to get -26.
4x-26>18x-3-12
Use the distributive property to multiply 3 by 6x-1.
4x-26>18x-15
Subtract 12 from -3 to get -15.
4x-26-18x>-15
Subtract 18x from both sides.
-14x-26>-15
Combine 4x and -18x to get -14x.
-14x>-15+26
Add 26 to both sides.
-14x>11
Add -15 and 26 to get 11.
x<-\frac{11}{14}
Divide both sides by -14. Since -14 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}