Solve for x
x = -\frac{22}{3} = -7\frac{1}{3} \approx -7.333333333
Graph
Share
Copied to clipboard
2\times 2x+3\left(8-x\right)=6\left(-\frac{4}{3}\right)^{2}+6
Multiply both sides of the equation by 6, the least common multiple of 3,6.
4x+3\left(8-x\right)=6\left(-\frac{4}{3}\right)^{2}+6
Multiply 2 and 2 to get 4.
4x+24-3x=6\left(-\frac{4}{3}\right)^{2}+6
Use the distributive property to multiply 3 by 8-x.
x+24=6\left(-\frac{4}{3}\right)^{2}+6
Combine 4x and -3x to get x.
x+24=6\times \frac{16}{9}+6
Calculate -\frac{4}{3} to the power of 2 and get \frac{16}{9}.
x+24=\frac{6\times 16}{9}+6
Express 6\times \frac{16}{9} as a single fraction.
x+24=\frac{96}{9}+6
Multiply 6 and 16 to get 96.
x+24=\frac{32}{3}+6
Reduce the fraction \frac{96}{9} to lowest terms by extracting and canceling out 3.
x+24=\frac{32}{3}+\frac{18}{3}
Convert 6 to fraction \frac{18}{3}.
x+24=\frac{32+18}{3}
Since \frac{32}{3} and \frac{18}{3} have the same denominator, add them by adding their numerators.
x+24=\frac{50}{3}
Add 32 and 18 to get 50.
x=\frac{50}{3}-24
Subtract 24 from both sides.
x=\frac{50}{3}-\frac{72}{3}
Convert 24 to fraction \frac{72}{3}.
x=\frac{50-72}{3}
Since \frac{50}{3} and \frac{72}{3} have the same denominator, subtract them by subtracting their numerators.
x=-\frac{22}{3}
Subtract 72 from 50 to get -22.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}