Evaluate
\frac{x}{15}
Differentiate w.r.t. x
\frac{1}{15} = 0.06666666666666667
Graph
Share
Copied to clipboard
\frac{4\times 2x}{60}-\frac{3\times 3x}{60}+\frac{x}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 20 is 60. Multiply \frac{2x}{15} times \frac{4}{4}. Multiply \frac{3x}{20} times \frac{3}{3}.
\frac{4\times 2x-3\times 3x}{60}+\frac{x}{12}
Since \frac{4\times 2x}{60} and \frac{3\times 3x}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{8x-9x}{60}+\frac{x}{12}
Do the multiplications in 4\times 2x-3\times 3x.
\frac{-x}{60}+\frac{x}{12}
Combine like terms in 8x-9x.
\frac{-x}{60}+\frac{5x}{60}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 60 and 12 is 60. Multiply \frac{x}{12} times \frac{5}{5}.
\frac{-x+5x}{60}
Since \frac{-x}{60} and \frac{5x}{60} have the same denominator, add them by adding their numerators.
\frac{4x}{60}
Combine like terms in -x+5x.
\frac{1}{15}x
Divide 4x by 60 to get \frac{1}{15}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 2x}{60}-\frac{3\times 3x}{60}+\frac{x}{12})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 20 is 60. Multiply \frac{2x}{15} times \frac{4}{4}. Multiply \frac{3x}{20} times \frac{3}{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 2x-3\times 3x}{60}+\frac{x}{12})
Since \frac{4\times 2x}{60} and \frac{3\times 3x}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x-9x}{60}+\frac{x}{12})
Do the multiplications in 4\times 2x-3\times 3x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x}{60}+\frac{x}{12})
Combine like terms in 8x-9x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x}{60}+\frac{5x}{60})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 60 and 12 is 60. Multiply \frac{x}{12} times \frac{5}{5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+5x}{60})
Since \frac{-x}{60} and \frac{5x}{60} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x}{60})
Combine like terms in -x+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{15}x)
Divide 4x by 60 to get \frac{1}{15}x.
\frac{1}{15}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{15}x^{0}
Subtract 1 from 1.
\frac{1}{15}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{15}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}