Solve for t
t=\frac{393+3\sqrt{5799}i}{70}\approx 5.614285714+3.263621377i
t=\frac{-3\sqrt{5799}i+393}{70}\approx 5.614285714-3.263621377i
Share
Copied to clipboard
\left(45t-108\right)\left(2t-6\right)-144\left(15-2t\right)=\left(40t-96\right)\left(4t-15\right)
Variable t cannot be equal to \frac{12}{5} since division by zero is not defined. Multiply both sides of the equation by 144\left(5t-12\right), the least common multiple of 16,12-5t,18.
90t^{2}-486t+648-144\left(15-2t\right)=\left(40t-96\right)\left(4t-15\right)
Use the distributive property to multiply 45t-108 by 2t-6 and combine like terms.
90t^{2}-486t+648-2160+288t=\left(40t-96\right)\left(4t-15\right)
Use the distributive property to multiply -144 by 15-2t.
90t^{2}-486t-1512+288t=\left(40t-96\right)\left(4t-15\right)
Subtract 2160 from 648 to get -1512.
90t^{2}-198t-1512=\left(40t-96\right)\left(4t-15\right)
Combine -486t and 288t to get -198t.
90t^{2}-198t-1512=160t^{2}-984t+1440
Use the distributive property to multiply 40t-96 by 4t-15 and combine like terms.
90t^{2}-198t-1512-160t^{2}=-984t+1440
Subtract 160t^{2} from both sides.
-70t^{2}-198t-1512=-984t+1440
Combine 90t^{2} and -160t^{2} to get -70t^{2}.
-70t^{2}-198t-1512+984t=1440
Add 984t to both sides.
-70t^{2}+786t-1512=1440
Combine -198t and 984t to get 786t.
-70t^{2}+786t-1512-1440=0
Subtract 1440 from both sides.
-70t^{2}+786t-2952=0
Subtract 1440 from -1512 to get -2952.
t=\frac{-786±\sqrt{786^{2}-4\left(-70\right)\left(-2952\right)}}{2\left(-70\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -70 for a, 786 for b, and -2952 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-786±\sqrt{617796-4\left(-70\right)\left(-2952\right)}}{2\left(-70\right)}
Square 786.
t=\frac{-786±\sqrt{617796+280\left(-2952\right)}}{2\left(-70\right)}
Multiply -4 times -70.
t=\frac{-786±\sqrt{617796-826560}}{2\left(-70\right)}
Multiply 280 times -2952.
t=\frac{-786±\sqrt{-208764}}{2\left(-70\right)}
Add 617796 to -826560.
t=\frac{-786±6\sqrt{5799}i}{2\left(-70\right)}
Take the square root of -208764.
t=\frac{-786±6\sqrt{5799}i}{-140}
Multiply 2 times -70.
t=\frac{-786+6\sqrt{5799}i}{-140}
Now solve the equation t=\frac{-786±6\sqrt{5799}i}{-140} when ± is plus. Add -786 to 6i\sqrt{5799}.
t=\frac{-3\sqrt{5799}i+393}{70}
Divide -786+6i\sqrt{5799} by -140.
t=\frac{-6\sqrt{5799}i-786}{-140}
Now solve the equation t=\frac{-786±6\sqrt{5799}i}{-140} when ± is minus. Subtract 6i\sqrt{5799} from -786.
t=\frac{393+3\sqrt{5799}i}{70}
Divide -786-6i\sqrt{5799} by -140.
t=\frac{-3\sqrt{5799}i+393}{70} t=\frac{393+3\sqrt{5799}i}{70}
The equation is now solved.
\left(45t-108\right)\left(2t-6\right)-144\left(15-2t\right)=\left(40t-96\right)\left(4t-15\right)
Variable t cannot be equal to \frac{12}{5} since division by zero is not defined. Multiply both sides of the equation by 144\left(5t-12\right), the least common multiple of 16,12-5t,18.
90t^{2}-486t+648-144\left(15-2t\right)=\left(40t-96\right)\left(4t-15\right)
Use the distributive property to multiply 45t-108 by 2t-6 and combine like terms.
90t^{2}-486t+648-2160+288t=\left(40t-96\right)\left(4t-15\right)
Use the distributive property to multiply -144 by 15-2t.
90t^{2}-486t-1512+288t=\left(40t-96\right)\left(4t-15\right)
Subtract 2160 from 648 to get -1512.
90t^{2}-198t-1512=\left(40t-96\right)\left(4t-15\right)
Combine -486t and 288t to get -198t.
90t^{2}-198t-1512=160t^{2}-984t+1440
Use the distributive property to multiply 40t-96 by 4t-15 and combine like terms.
90t^{2}-198t-1512-160t^{2}=-984t+1440
Subtract 160t^{2} from both sides.
-70t^{2}-198t-1512=-984t+1440
Combine 90t^{2} and -160t^{2} to get -70t^{2}.
-70t^{2}-198t-1512+984t=1440
Add 984t to both sides.
-70t^{2}+786t-1512=1440
Combine -198t and 984t to get 786t.
-70t^{2}+786t=1440+1512
Add 1512 to both sides.
-70t^{2}+786t=2952
Add 1440 and 1512 to get 2952.
\frac{-70t^{2}+786t}{-70}=\frac{2952}{-70}
Divide both sides by -70.
t^{2}+\frac{786}{-70}t=\frac{2952}{-70}
Dividing by -70 undoes the multiplication by -70.
t^{2}-\frac{393}{35}t=\frac{2952}{-70}
Reduce the fraction \frac{786}{-70} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{393}{35}t=-\frac{1476}{35}
Reduce the fraction \frac{2952}{-70} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{393}{35}t+\left(-\frac{393}{70}\right)^{2}=-\frac{1476}{35}+\left(-\frac{393}{70}\right)^{2}
Divide -\frac{393}{35}, the coefficient of the x term, by 2 to get -\frac{393}{70}. Then add the square of -\frac{393}{70} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{393}{35}t+\frac{154449}{4900}=-\frac{1476}{35}+\frac{154449}{4900}
Square -\frac{393}{70} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{393}{35}t+\frac{154449}{4900}=-\frac{52191}{4900}
Add -\frac{1476}{35} to \frac{154449}{4900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{393}{70}\right)^{2}=-\frac{52191}{4900}
Factor t^{2}-\frac{393}{35}t+\frac{154449}{4900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{393}{70}\right)^{2}}=\sqrt{-\frac{52191}{4900}}
Take the square root of both sides of the equation.
t-\frac{393}{70}=\frac{3\sqrt{5799}i}{70} t-\frac{393}{70}=-\frac{3\sqrt{5799}i}{70}
Simplify.
t=\frac{393+3\sqrt{5799}i}{70} t=\frac{-3\sqrt{5799}i+393}{70}
Add \frac{393}{70} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}