Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2m}{3m-2}-\frac{3m}{\left(9m^{2}-4\right)\left(3m+2\right)}
Multiply \frac{3}{9m^{2}-4} times \frac{m}{3m+2} by multiplying numerator times numerator and denominator times denominator.
\frac{2m}{3m-2}-\frac{3m}{27m^{3}+18m^{2}-12m-8}
Use the distributive property to multiply 9m^{2}-4 by 3m+2.
\frac{2m}{3m-2}-\frac{3m}{\left(3m-2\right)\left(3m+2\right)^{2}}
Factor 27m^{3}+18m^{2}-12m-8.
\frac{2m\left(3m+2\right)^{2}}{\left(3m-2\right)\left(3m+2\right)^{2}}-\frac{3m}{\left(3m-2\right)\left(3m+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3m-2 and \left(3m-2\right)\left(3m+2\right)^{2} is \left(3m-2\right)\left(3m+2\right)^{2}. Multiply \frac{2m}{3m-2} times \frac{\left(3m+2\right)^{2}}{\left(3m+2\right)^{2}}.
\frac{2m\left(3m+2\right)^{2}-3m}{\left(3m-2\right)\left(3m+2\right)^{2}}
Since \frac{2m\left(3m+2\right)^{2}}{\left(3m-2\right)\left(3m+2\right)^{2}} and \frac{3m}{\left(3m-2\right)\left(3m+2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{18m^{3}+24m^{2}+8m-3m}{\left(3m-2\right)\left(3m+2\right)^{2}}
Do the multiplications in 2m\left(3m+2\right)^{2}-3m.
\frac{18m^{3}+24m^{2}+5m}{\left(3m-2\right)\left(3m+2\right)^{2}}
Combine like terms in 18m^{3}+24m^{2}+8m-3m.
\frac{18m^{3}+24m^{2}+5m}{27m^{3}+18m^{2}-12m-8}
Expand \left(3m-2\right)\left(3m+2\right)^{2}.