Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2a-4\right)\left(a-2\right)}{3b\left(a-2\right)}-\frac{6b\times 3b}{3b\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b and a-2 is 3b\left(a-2\right). Multiply \frac{2a-4}{3b} times \frac{a-2}{a-2}. Multiply \frac{6b}{a-2} times \frac{3b}{3b}.
\frac{\left(2a-4\right)\left(a-2\right)-6b\times 3b}{3b\left(a-2\right)}
Since \frac{\left(2a-4\right)\left(a-2\right)}{3b\left(a-2\right)} and \frac{6b\times 3b}{3b\left(a-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}-4a-4a+8-18b^{2}}{3b\left(a-2\right)}
Do the multiplications in \left(2a-4\right)\left(a-2\right)-6b\times 3b.
\frac{2a^{2}-8a+8-18b^{2}}{3b\left(a-2\right)}
Combine like terms in 2a^{2}-4a-4a+8-18b^{2}.
\frac{2a^{2}-8a+8-18b^{2}}{3ab-6b}
Expand 3b\left(a-2\right).
\frac{\left(2a-4\right)\left(a-2\right)}{3b\left(a-2\right)}-\frac{6b\times 3b}{3b\left(a-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b and a-2 is 3b\left(a-2\right). Multiply \frac{2a-4}{3b} times \frac{a-2}{a-2}. Multiply \frac{6b}{a-2} times \frac{3b}{3b}.
\frac{\left(2a-4\right)\left(a-2\right)-6b\times 3b}{3b\left(a-2\right)}
Since \frac{\left(2a-4\right)\left(a-2\right)}{3b\left(a-2\right)} and \frac{6b\times 3b}{3b\left(a-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a^{2}-4a-4a+8-18b^{2}}{3b\left(a-2\right)}
Do the multiplications in \left(2a-4\right)\left(a-2\right)-6b\times 3b.
\frac{2a^{2}-8a+8-18b^{2}}{3b\left(a-2\right)}
Combine like terms in 2a^{2}-4a-4a+8-18b^{2}.
\frac{2a^{2}-8a+8-18b^{2}}{3ab-6b}
Expand 3b\left(a-2\right).