Evaluate
\frac{283}{64}=4.421875
Factor
\frac{283}{2 ^ {6}} = 4\frac{27}{64} = 4.421875
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)283}\\\end{array}
Use the 1^{st} digit 2 from dividend 283
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)283}\\\end{array}
Since 2 is less than 64, use the next digit 8 from dividend 283 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)283}\\\end{array}
Use the 2^{nd} digit 8 from dividend 283
\begin{array}{l}\phantom{64)}00\phantom{4}\\64\overline{)283}\\\end{array}
Since 28 is less than 64, use the next digit 3 from dividend 283 and add 0 to the quotient
\begin{array}{l}\phantom{64)}00\phantom{5}\\64\overline{)283}\\\end{array}
Use the 3^{rd} digit 3 from dividend 283
\begin{array}{l}\phantom{64)}004\phantom{6}\\64\overline{)283}\\\phantom{64)}\underline{\phantom{}256\phantom{}}\\\phantom{64)9}27\\\end{array}
Find closest multiple of 64 to 283. We see that 4 \times 64 = 256 is the nearest. Now subtract 256 from 283 to get reminder 27. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }27
Since 27 is less than 64, stop the division. The reminder is 27. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}