Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(28y^{2}\right)^{1}\times \frac{1}{4y^{5}}
Use the rules of exponents to simplify the expression.
28^{1}\left(y^{2}\right)^{1}\times \frac{1}{4}\times \frac{1}{y^{5}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
28^{1}\times \frac{1}{4}\left(y^{2}\right)^{1}\times \frac{1}{y^{5}}
Use the Commutative Property of Multiplication.
28^{1}\times \frac{1}{4}y^{2}y^{5\left(-1\right)}
To raise a power to another power, multiply the exponents.
28^{1}\times \frac{1}{4}y^{2}y^{-5}
Multiply 5 times -1.
28^{1}\times \frac{1}{4}y^{2-5}
To multiply powers of the same base, add their exponents.
28^{1}\times \frac{1}{4}y^{-3}
Add the exponents 2 and -5.
28\times \frac{1}{4}y^{-3}
Raise 28 to the power 1.
7y^{-3}
Multiply 28 times \frac{1}{4}.
\frac{28^{1}y^{2}}{4^{1}y^{5}}
Use the rules of exponents to simplify the expression.
\frac{28^{1}y^{2-5}}{4^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{28^{1}y^{-3}}{4^{1}}
Subtract 5 from 2.
7y^{-3}
Divide 28 by 4.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{28}{4}y^{2-5})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(7y^{-3})
Do the arithmetic.
-3\times 7y^{-3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-21y^{-4}
Do the arithmetic.