Evaluate
\frac{49}{5}+\frac{7}{5}i=9.8+1.4i
Real Part
\frac{49}{5} = 9\frac{4}{5} = 9.8
Share
Copied to clipboard
\frac{28i\left(4-28i\right)}{\left(4+28i\right)\left(4-28i\right)}\times 10
Multiply both numerator and denominator of \frac{28i}{4+28i} by the complex conjugate of the denominator, 4-28i.
\frac{28i\left(4-28i\right)}{4^{2}-28^{2}i^{2}}\times 10
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{28i\left(4-28i\right)}{800}\times 10
By definition, i^{2} is -1. Calculate the denominator.
\frac{28i\times 4+28\left(-28\right)i^{2}}{800}\times 10
Multiply 28i times 4-28i.
\frac{28i\times 4+28\left(-28\right)\left(-1\right)}{800}\times 10
By definition, i^{2} is -1.
\frac{784+112i}{800}\times 10
Do the multiplications in 28i\times 4+28\left(-28\right)\left(-1\right). Reorder the terms.
\left(\frac{49}{50}+\frac{7}{50}i\right)\times 10
Divide 784+112i by 800 to get \frac{49}{50}+\frac{7}{50}i.
\frac{49}{50}\times 10+\frac{7}{50}i\times 10
Multiply \frac{49}{50}+\frac{7}{50}i times 10.
\frac{49}{5}+\frac{7}{5}i
Do the multiplications.
Re(\frac{28i\left(4-28i\right)}{\left(4+28i\right)\left(4-28i\right)}\times 10)
Multiply both numerator and denominator of \frac{28i}{4+28i} by the complex conjugate of the denominator, 4-28i.
Re(\frac{28i\left(4-28i\right)}{4^{2}-28^{2}i^{2}}\times 10)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{28i\left(4-28i\right)}{800}\times 10)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{28i\times 4+28\left(-28\right)i^{2}}{800}\times 10)
Multiply 28i times 4-28i.
Re(\frac{28i\times 4+28\left(-28\right)\left(-1\right)}{800}\times 10)
By definition, i^{2} is -1.
Re(\frac{784+112i}{800}\times 10)
Do the multiplications in 28i\times 4+28\left(-28\right)\left(-1\right). Reorder the terms.
Re(\left(\frac{49}{50}+\frac{7}{50}i\right)\times 10)
Divide 784+112i by 800 to get \frac{49}{50}+\frac{7}{50}i.
Re(\frac{49}{50}\times 10+\frac{7}{50}i\times 10)
Multiply \frac{49}{50}+\frac{7}{50}i times 10.
Re(\frac{49}{5}+\frac{7}{5}i)
Do the multiplications in \frac{49}{50}\times 10+\frac{7}{50}i\times 10.
\frac{49}{5}
The real part of \frac{49}{5}+\frac{7}{5}i is \frac{49}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}