Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{28i\left(4-28i\right)}{\left(4+28i\right)\left(4-28i\right)}\times 10
Multiply both numerator and denominator of \frac{28i}{4+28i} by the complex conjugate of the denominator, 4-28i.
\frac{28i\left(4-28i\right)}{4^{2}-28^{2}i^{2}}\times 10
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{28i\left(4-28i\right)}{800}\times 10
By definition, i^{2} is -1. Calculate the denominator.
\frac{28i\times 4+28\left(-28\right)i^{2}}{800}\times 10
Multiply 28i times 4-28i.
\frac{28i\times 4+28\left(-28\right)\left(-1\right)}{800}\times 10
By definition, i^{2} is -1.
\frac{784+112i}{800}\times 10
Do the multiplications in 28i\times 4+28\left(-28\right)\left(-1\right). Reorder the terms.
\left(\frac{49}{50}+\frac{7}{50}i\right)\times 10
Divide 784+112i by 800 to get \frac{49}{50}+\frac{7}{50}i.
\frac{49}{50}\times 10+\frac{7}{50}i\times 10
Multiply \frac{49}{50}+\frac{7}{50}i times 10.
\frac{49}{5}+\frac{7}{5}i
Do the multiplications.
Re(\frac{28i\left(4-28i\right)}{\left(4+28i\right)\left(4-28i\right)}\times 10)
Multiply both numerator and denominator of \frac{28i}{4+28i} by the complex conjugate of the denominator, 4-28i.
Re(\frac{28i\left(4-28i\right)}{4^{2}-28^{2}i^{2}}\times 10)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{28i\left(4-28i\right)}{800}\times 10)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{28i\times 4+28\left(-28\right)i^{2}}{800}\times 10)
Multiply 28i times 4-28i.
Re(\frac{28i\times 4+28\left(-28\right)\left(-1\right)}{800}\times 10)
By definition, i^{2} is -1.
Re(\frac{784+112i}{800}\times 10)
Do the multiplications in 28i\times 4+28\left(-28\right)\left(-1\right). Reorder the terms.
Re(\left(\frac{49}{50}+\frac{7}{50}i\right)\times 10)
Divide 784+112i by 800 to get \frac{49}{50}+\frac{7}{50}i.
Re(\frac{49}{50}\times 10+\frac{7}{50}i\times 10)
Multiply \frac{49}{50}+\frac{7}{50}i times 10.
Re(\frac{49}{5}+\frac{7}{5}i)
Do the multiplications in \frac{49}{50}\times 10+\frac{7}{50}i\times 10.
\frac{49}{5}
The real part of \frac{49}{5}+\frac{7}{5}i is \frac{49}{5}.