Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{27\left(1+\sqrt{10}\right)}{\left(1-\sqrt{10}\right)\left(1+\sqrt{10}\right)}
Rationalize the denominator of \frac{27}{1-\sqrt{10}} by multiplying numerator and denominator by 1+\sqrt{10}.
\frac{27\left(1+\sqrt{10}\right)}{1^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(1-\sqrt{10}\right)\left(1+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{27\left(1+\sqrt{10}\right)}{1-10}
Square 1. Square \sqrt{10}.
\frac{27\left(1+\sqrt{10}\right)}{-9}
Subtract 10 from 1 to get -9.
-3\left(1+\sqrt{10}\right)
Divide 27\left(1+\sqrt{10}\right) by -9 to get -3\left(1+\sqrt{10}\right).
-3-3\sqrt{10}
Use the distributive property to multiply -3 by 1+\sqrt{10}.