Evaluate
\frac{85}{26}\approx 3.269230769
Factor
\frac{5 \cdot 17}{2 \cdot 13} = 3\frac{7}{26} = 3.269230769230769
Share
Copied to clipboard
\begin{array}{l}\phantom{78)}\phantom{1}\\78\overline{)255}\\\end{array}
Use the 1^{st} digit 2 from dividend 255
\begin{array}{l}\phantom{78)}0\phantom{2}\\78\overline{)255}\\\end{array}
Since 2 is less than 78, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{78)}0\phantom{3}\\78\overline{)255}\\\end{array}
Use the 2^{nd} digit 5 from dividend 255
\begin{array}{l}\phantom{78)}00\phantom{4}\\78\overline{)255}\\\end{array}
Since 25 is less than 78, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{78)}00\phantom{5}\\78\overline{)255}\\\end{array}
Use the 3^{rd} digit 5 from dividend 255
\begin{array}{l}\phantom{78)}003\phantom{6}\\78\overline{)255}\\\phantom{78)}\underline{\phantom{}234\phantom{}}\\\phantom{78)9}21\\\end{array}
Find closest multiple of 78 to 255. We see that 3 \times 78 = 234 is the nearest. Now subtract 234 from 255 to get reminder 21. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }21
Since 21 is less than 78, stop the division. The reminder is 21. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}