Evaluate
\frac{15}{8}=1.875
Factor
\frac{3 \cdot 5}{2 ^ {3}} = 1\frac{7}{8} = 1.875
Share
Copied to clipboard
\begin{array}{l}\phantom{136)}\phantom{1}\\136\overline{)255}\\\end{array}
Use the 1^{st} digit 2 from dividend 255
\begin{array}{l}\phantom{136)}0\phantom{2}\\136\overline{)255}\\\end{array}
Since 2 is less than 136, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{136)}0\phantom{3}\\136\overline{)255}\\\end{array}
Use the 2^{nd} digit 5 from dividend 255
\begin{array}{l}\phantom{136)}00\phantom{4}\\136\overline{)255}\\\end{array}
Since 25 is less than 136, use the next digit 5 from dividend 255 and add 0 to the quotient
\begin{array}{l}\phantom{136)}00\phantom{5}\\136\overline{)255}\\\end{array}
Use the 3^{rd} digit 5 from dividend 255
\begin{array}{l}\phantom{136)}001\phantom{6}\\136\overline{)255}\\\phantom{136)}\underline{\phantom{}136\phantom{}}\\\phantom{136)}119\\\end{array}
Find closest multiple of 136 to 255. We see that 1 \times 136 = 136 is the nearest. Now subtract 136 from 255 to get reminder 119. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }119
Since 119 is less than 136, stop the division. The reminder is 119. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}