Evaluate
\frac{252}{19}\approx 13.263157895
Factor
\frac{2 ^ {2} \cdot 3 ^ {2} \cdot 7}{19} = 13\frac{5}{19} = 13.263157894736842
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)252}\\\end{array}
Use the 1^{st} digit 2 from dividend 252
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)252}\\\end{array}
Since 2 is less than 19, use the next digit 5 from dividend 252 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)252}\\\end{array}
Use the 2^{nd} digit 5 from dividend 252
\begin{array}{l}\phantom{19)}01\phantom{4}\\19\overline{)252}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)9}6\\\end{array}
Find closest multiple of 19 to 25. We see that 1 \times 19 = 19 is the nearest. Now subtract 19 from 25 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{19)}01\phantom{5}\\19\overline{)252}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)9}62\\\end{array}
Use the 3^{rd} digit 2 from dividend 252
\begin{array}{l}\phantom{19)}013\phantom{6}\\19\overline{)252}\\\phantom{19)}\underline{\phantom{}19\phantom{9}}\\\phantom{19)9}62\\\phantom{19)}\underline{\phantom{9}57\phantom{}}\\\phantom{19)99}5\\\end{array}
Find closest multiple of 19 to 62. We see that 3 \times 19 = 57 is the nearest. Now subtract 57 from 62 to get reminder 5. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }5
Since 5 is less than 19, stop the division. The reminder is 5. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}