Evaluate
\frac{250}{239}\approx 1.046025105
Factor
\frac{2 \cdot 5 ^ {3}}{239} = 1\frac{11}{239} = 1.0460251046025104
Share
Copied to clipboard
\begin{array}{l}\phantom{239)}\phantom{1}\\239\overline{)250}\\\end{array}
Use the 1^{st} digit 2 from dividend 250
\begin{array}{l}\phantom{239)}0\phantom{2}\\239\overline{)250}\\\end{array}
Since 2 is less than 239, use the next digit 5 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{239)}0\phantom{3}\\239\overline{)250}\\\end{array}
Use the 2^{nd} digit 5 from dividend 250
\begin{array}{l}\phantom{239)}00\phantom{4}\\239\overline{)250}\\\end{array}
Since 25 is less than 239, use the next digit 0 from dividend 250 and add 0 to the quotient
\begin{array}{l}\phantom{239)}00\phantom{5}\\239\overline{)250}\\\end{array}
Use the 3^{rd} digit 0 from dividend 250
\begin{array}{l}\phantom{239)}001\phantom{6}\\239\overline{)250}\\\phantom{239)}\underline{\phantom{}239\phantom{}}\\\phantom{239)9}11\\\end{array}
Find closest multiple of 239 to 250. We see that 1 \times 239 = 239 is the nearest. Now subtract 239 from 250 to get reminder 11. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }11
Since 11 is less than 239, stop the division. The reminder is 11. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}