Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{\left(6\sqrt{2}-11\right)\left(6\sqrt{2}+11\right)}
Rationalize the denominator of \frac{24-3\sqrt{2}}{6\sqrt{2}-11} by multiplying numerator and denominator by 6\sqrt{2}+11.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{\left(6\sqrt{2}\right)^{2}-11^{2}}
Consider \left(6\sqrt{2}-11\right)\left(6\sqrt{2}+11\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{6^{2}\left(\sqrt{2}\right)^{2}-11^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{36\left(\sqrt{2}\right)^{2}-11^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{36\times 2-11^{2}}
The square of \sqrt{2} is 2.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{72-11^{2}}
Multiply 36 and 2 to get 72.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{72-121}
Calculate 11 to the power of 2 and get 121.
\frac{\left(24-3\sqrt{2}\right)\left(6\sqrt{2}+11\right)}{-49}
Subtract 121 from 72 to get -49.
\frac{144\sqrt{2}+264-18\left(\sqrt{2}\right)^{2}-33\sqrt{2}}{-49}
Apply the distributive property by multiplying each term of 24-3\sqrt{2} by each term of 6\sqrt{2}+11.
\frac{144\sqrt{2}+264-18\times 2-33\sqrt{2}}{-49}
The square of \sqrt{2} is 2.
\frac{144\sqrt{2}+264-36-33\sqrt{2}}{-49}
Multiply -18 and 2 to get -36.
\frac{144\sqrt{2}+228-33\sqrt{2}}{-49}
Subtract 36 from 264 to get 228.
\frac{111\sqrt{2}+228}{-49}
Combine 144\sqrt{2} and -33\sqrt{2} to get 111\sqrt{2}.