Evaluate
\frac{119}{6}\approx 19.833333333
Factor
\frac{7 \cdot 17}{2 \cdot 3} = 19\frac{5}{6} = 19.833333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)238}\\\end{array}
Use the 1^{st} digit 2 from dividend 238
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)238}\\\end{array}
Since 2 is less than 12, use the next digit 3 from dividend 238 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)238}\\\end{array}
Use the 2^{nd} digit 3 from dividend 238
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)238}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)}11\\\end{array}
Find closest multiple of 12 to 23. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 23 to get reminder 11. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)238}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)}118\\\end{array}
Use the 3^{rd} digit 8 from dividend 238
\begin{array}{l}\phantom{12)}019\phantom{6}\\12\overline{)238}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)}118\\\phantom{12)}\underline{\phantom{}108\phantom{}}\\\phantom{12)9}10\\\end{array}
Find closest multiple of 12 to 118. We see that 9 \times 12 = 108 is the nearest. Now subtract 108 from 118 to get reminder 10. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }10
Since 10 is less than 12, stop the division. The reminder is 10. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}