Solve for x
x = \frac{5 \sqrt{8209} + 455}{2} \approx 454.00882985
x=\frac{455-5\sqrt{8209}}{2}\approx 0.99117015
Graph
Share
Copied to clipboard
22500+50\left(x-5\right)x=22500x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
22500+\left(50x-250\right)x=22500x
Use the distributive property to multiply 50 by x-5.
22500+50x^{2}-250x=22500x
Use the distributive property to multiply 50x-250 by x.
22500+50x^{2}-250x-22500x=0
Subtract 22500x from both sides.
22500+50x^{2}-22750x=0
Combine -250x and -22500x to get -22750x.
50x^{2}-22750x+22500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22750\right)±\sqrt{\left(-22750\right)^{2}-4\times 50\times 22500}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -22750 for b, and 22500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22750\right)±\sqrt{517562500-4\times 50\times 22500}}{2\times 50}
Square -22750.
x=\frac{-\left(-22750\right)±\sqrt{517562500-200\times 22500}}{2\times 50}
Multiply -4 times 50.
x=\frac{-\left(-22750\right)±\sqrt{517562500-4500000}}{2\times 50}
Multiply -200 times 22500.
x=\frac{-\left(-22750\right)±\sqrt{513062500}}{2\times 50}
Add 517562500 to -4500000.
x=\frac{-\left(-22750\right)±250\sqrt{8209}}{2\times 50}
Take the square root of 513062500.
x=\frac{22750±250\sqrt{8209}}{2\times 50}
The opposite of -22750 is 22750.
x=\frac{22750±250\sqrt{8209}}{100}
Multiply 2 times 50.
x=\frac{250\sqrt{8209}+22750}{100}
Now solve the equation x=\frac{22750±250\sqrt{8209}}{100} when ± is plus. Add 22750 to 250\sqrt{8209}.
x=\frac{5\sqrt{8209}+455}{2}
Divide 22750+250\sqrt{8209} by 100.
x=\frac{22750-250\sqrt{8209}}{100}
Now solve the equation x=\frac{22750±250\sqrt{8209}}{100} when ± is minus. Subtract 250\sqrt{8209} from 22750.
x=\frac{455-5\sqrt{8209}}{2}
Divide 22750-250\sqrt{8209} by 100.
x=\frac{5\sqrt{8209}+455}{2} x=\frac{455-5\sqrt{8209}}{2}
The equation is now solved.
22500+50\left(x-5\right)x=22500x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
22500+\left(50x-250\right)x=22500x
Use the distributive property to multiply 50 by x-5.
22500+50x^{2}-250x=22500x
Use the distributive property to multiply 50x-250 by x.
22500+50x^{2}-250x-22500x=0
Subtract 22500x from both sides.
22500+50x^{2}-22750x=0
Combine -250x and -22500x to get -22750x.
50x^{2}-22750x=-22500
Subtract 22500 from both sides. Anything subtracted from zero gives its negation.
\frac{50x^{2}-22750x}{50}=-\frac{22500}{50}
Divide both sides by 50.
x^{2}+\left(-\frac{22750}{50}\right)x=-\frac{22500}{50}
Dividing by 50 undoes the multiplication by 50.
x^{2}-455x=-\frac{22500}{50}
Divide -22750 by 50.
x^{2}-455x=-450
Divide -22500 by 50.
x^{2}-455x+\left(-\frac{455}{2}\right)^{2}=-450+\left(-\frac{455}{2}\right)^{2}
Divide -455, the coefficient of the x term, by 2 to get -\frac{455}{2}. Then add the square of -\frac{455}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-455x+\frac{207025}{4}=-450+\frac{207025}{4}
Square -\frac{455}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-455x+\frac{207025}{4}=\frac{205225}{4}
Add -450 to \frac{207025}{4}.
\left(x-\frac{455}{2}\right)^{2}=\frac{205225}{4}
Factor x^{2}-455x+\frac{207025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{455}{2}\right)^{2}}=\sqrt{\frac{205225}{4}}
Take the square root of both sides of the equation.
x-\frac{455}{2}=\frac{5\sqrt{8209}}{2} x-\frac{455}{2}=-\frac{5\sqrt{8209}}{2}
Simplify.
x=\frac{5\sqrt{8209}+455}{2} x=\frac{455-5\sqrt{8209}}{2}
Add \frac{455}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}