Evaluate
\frac{43}{3}\approx 14.333333333
Factor
\frac{43}{3} = 14\frac{1}{3} = 14.333333333333334
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)215}\\\end{array}
Use the 1^{st} digit 2 from dividend 215
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)215}\\\end{array}
Since 2 is less than 15, use the next digit 1 from dividend 215 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)215}\\\end{array}
Use the 2^{nd} digit 1 from dividend 215
\begin{array}{l}\phantom{15)}01\phantom{4}\\15\overline{)215}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}6\\\end{array}
Find closest multiple of 15 to 21. We see that 1 \times 15 = 15 is the nearest. Now subtract 15 from 21 to get reminder 6. Add 1 to quotient.
\begin{array}{l}\phantom{15)}01\phantom{5}\\15\overline{)215}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}65\\\end{array}
Use the 3^{rd} digit 5 from dividend 215
\begin{array}{l}\phantom{15)}014\phantom{6}\\15\overline{)215}\\\phantom{15)}\underline{\phantom{}15\phantom{9}}\\\phantom{15)9}65\\\phantom{15)}\underline{\phantom{9}60\phantom{}}\\\phantom{15)99}5\\\end{array}
Find closest multiple of 15 to 65. We see that 4 \times 15 = 60 is the nearest. Now subtract 60 from 65 to get reminder 5. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }5
Since 5 is less than 15, stop the division. The reminder is 5. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}