Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{21\left(\sqrt{2}+4\right)}{\left(\sqrt{2}-4\right)\left(\sqrt{2}+4\right)}
Rationalize the denominator of \frac{21}{\sqrt{2}-4} by multiplying numerator and denominator by \sqrt{2}+4.
\frac{21\left(\sqrt{2}+4\right)}{\left(\sqrt{2}\right)^{2}-4^{2}}
Consider \left(\sqrt{2}-4\right)\left(\sqrt{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21\left(\sqrt{2}+4\right)}{2-16}
Square \sqrt{2}. Square 4.
\frac{21\left(\sqrt{2}+4\right)}{-14}
Subtract 16 from 2 to get -14.
-\frac{3}{2}\left(\sqrt{2}+4\right)
Divide 21\left(\sqrt{2}+4\right) by -14 to get -\frac{3}{2}\left(\sqrt{2}+4\right).
-\frac{3}{2}\sqrt{2}-\frac{3}{2}\times 4
Use the distributive property to multiply -\frac{3}{2} by \sqrt{2}+4.
-\frac{3}{2}\sqrt{2}+\frac{-3\times 4}{2}
Express -\frac{3}{2}\times 4 as a single fraction.
-\frac{3}{2}\sqrt{2}+\frac{-12}{2}
Multiply -3 and 4 to get -12.
-\frac{3}{2}\sqrt{2}-6
Divide -12 by 2 to get -6.