Evaluate
\frac{81}{25}=3.24
Factor
\frac{3 ^ {4}}{5 ^ {2}} = 3\frac{6}{25} = 3.24
Share
Copied to clipboard
\begin{array}{l}\phantom{625)}\phantom{1}\\625\overline{)2025}\\\end{array}
Use the 1^{st} digit 2 from dividend 2025
\begin{array}{l}\phantom{625)}0\phantom{2}\\625\overline{)2025}\\\end{array}
Since 2 is less than 625, use the next digit 0 from dividend 2025 and add 0 to the quotient
\begin{array}{l}\phantom{625)}0\phantom{3}\\625\overline{)2025}\\\end{array}
Use the 2^{nd} digit 0 from dividend 2025
\begin{array}{l}\phantom{625)}00\phantom{4}\\625\overline{)2025}\\\end{array}
Since 20 is less than 625, use the next digit 2 from dividend 2025 and add 0 to the quotient
\begin{array}{l}\phantom{625)}00\phantom{5}\\625\overline{)2025}\\\end{array}
Use the 3^{rd} digit 2 from dividend 2025
\begin{array}{l}\phantom{625)}000\phantom{6}\\625\overline{)2025}\\\end{array}
Since 202 is less than 625, use the next digit 5 from dividend 2025 and add 0 to the quotient
\begin{array}{l}\phantom{625)}000\phantom{7}\\625\overline{)2025}\\\end{array}
Use the 4^{th} digit 5 from dividend 2025
\begin{array}{l}\phantom{625)}0003\phantom{8}\\625\overline{)2025}\\\phantom{625)}\underline{\phantom{}1875\phantom{}}\\\phantom{625)9}150\\\end{array}
Find closest multiple of 625 to 2025. We see that 3 \times 625 = 1875 is the nearest. Now subtract 1875 from 2025 to get reminder 150. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }150
Since 150 is less than 625, stop the division. The reminder is 150. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}