Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4022.9+2011.45+2011.45+2011.45}{\left(\frac{1}{1+0.085}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 2011.45 and 2011.45 to get 4022.9.
\frac{6034.35+2011.45+2011.45}{\left(\frac{1}{1+0.085}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 4022.9 and 2011.45 to get 6034.35.
\frac{8045.8+2011.45}{\left(\frac{1}{1+0.085}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 6034.35 and 2011.45 to get 8045.8.
\frac{10057.25}{\left(\frac{1}{1+0.085}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 8045.8 and 2011.45 to get 10057.25.
\frac{10057.25}{\left(\frac{1}{1.085}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 1 and 0.085 to get 1.085.
\frac{10057.25}{\left(\frac{1000}{1085}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Expand \frac{1}{1.085} by multiplying both numerator and the denominator by 1000.
\frac{10057.25}{\left(\frac{200}{217}\right)^{1}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Reduce the fraction \frac{1000}{1085} to lowest terms by extracting and canceling out 5.
\frac{10057.25}{\frac{200}{217}+\left(\frac{1}{1+0.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Calculate \frac{200}{217} to the power of 1 and get \frac{200}{217}.
\frac{10057.25}{\frac{200}{217}+\left(\frac{1}{1.085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 1 and 0.085 to get 1.085.
\frac{10057.25}{\frac{200}{217}+\left(\frac{1000}{1085}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Expand \frac{1}{1.085} by multiplying both numerator and the denominator by 1000.
\frac{10057.25}{\frac{200}{217}+\left(\frac{200}{217}\right)^{2}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Reduce the fraction \frac{1000}{1085} to lowest terms by extracting and canceling out 5.
\frac{10057.25}{\frac{200}{217}+\frac{40000}{47089}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Calculate \frac{200}{217} to the power of 2 and get \frac{40000}{47089}.
\frac{10057.25}{\frac{83400}{47089}+\left(\frac{1}{1+0.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add \frac{200}{217} and \frac{40000}{47089} to get \frac{83400}{47089}.
\frac{10057.25}{\frac{83400}{47089}+\left(\frac{1}{1.085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 1 and 0.085 to get 1.085.
\frac{10057.25}{\frac{83400}{47089}+\left(\frac{1000}{1085}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Expand \frac{1}{1.085} by multiplying both numerator and the denominator by 1000.
\frac{10057.25}{\frac{83400}{47089}+\left(\frac{200}{217}\right)^{3}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Reduce the fraction \frac{1000}{1085} to lowest terms by extracting and canceling out 5.
\frac{10057.25}{\frac{83400}{47089}+\frac{8000000}{10218313}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Calculate \frac{200}{217} to the power of 3 and get \frac{8000000}{10218313}.
\frac{10057.25}{\frac{26097800}{10218313}+\left(\frac{1}{1+0.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add \frac{83400}{47089} and \frac{8000000}{10218313} to get \frac{26097800}{10218313}.
\frac{10057.25}{\frac{26097800}{10218313}+\left(\frac{1}{1.085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Add 1 and 0.085 to get 1.085.
\frac{10057.25}{\frac{26097800}{10218313}+\left(\frac{1000}{1085}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Expand \frac{1}{1.085} by multiplying both numerator and the denominator by 1000.
\frac{10057.25}{\frac{26097800}{10218313}+\left(\frac{200}{217}\right)^{4}+\left(\frac{1}{1+0.085}\right)^{5}}
Reduce the fraction \frac{1000}{1085} to lowest terms by extracting and canceling out 5.
\frac{10057.25}{\frac{26097800}{10218313}+\frac{1600000000}{2217373921}+\left(\frac{1}{1+0.085}\right)^{5}}
Calculate \frac{200}{217} to the power of 4 and get \frac{1600000000}{2217373921}.
\frac{10057.25}{\frac{7263222600}{2217373921}+\left(\frac{1}{1+0.085}\right)^{5}}
Add \frac{26097800}{10218313} and \frac{1600000000}{2217373921} to get \frac{7263222600}{2217373921}.
\frac{10057.25}{\frac{7263222600}{2217373921}+\left(\frac{1}{1.085}\right)^{5}}
Add 1 and 0.085 to get 1.085.
\frac{10057.25}{\frac{7263222600}{2217373921}+\left(\frac{1000}{1085}\right)^{5}}
Expand \frac{1}{1.085} by multiplying both numerator and the denominator by 1000.
\frac{10057.25}{\frac{7263222600}{2217373921}+\left(\frac{200}{217}\right)^{5}}
Reduce the fraction \frac{1000}{1085} to lowest terms by extracting and canceling out 5.
\frac{10057.25}{\frac{7263222600}{2217373921}+\frac{320000000000}{481170140857}}
Calculate \frac{200}{217} to the power of 5 and get \frac{320000000000}{481170140857}.
\frac{10057.25}{\frac{1896119304200}{481170140857}}
Add \frac{7263222600}{2217373921} and \frac{320000000000}{481170140857} to get \frac{1896119304200}{481170140857}.
10057.25\times \frac{481170140857}{1896119304200}
Divide 10057.25 by \frac{1896119304200}{481170140857} by multiplying 10057.25 by the reciprocal of \frac{1896119304200}{481170140857}.
\frac{19356993596536253}{7584477216800}
Multiply 10057.25 and \frac{481170140857}{1896119304200} to get \frac{19356993596536253}{7584477216800}.