\frac{ 20000 }{ { \left(1+0.14 \right) }^{ 1 } } + \frac{ 50000 }{ { \left(1+0.14 \right) }^{ 2 } } + \frac{ { 50000 }^{ } }{ { \left(1+0.14 \right) }^{ 3 } } + \frac{ 25000 }{ { \left(1+0.14 \right) }^{ 4 } } -100000
Evaluate
\frac{48217900000}{10556001}\approx 4567.818816993
Factor
\frac{482179 \cdot 2 ^ {5} \cdot 5 ^ {5}}{3 ^ {4} \cdot 19 ^ {4}} = 4567\frac{8643433}{10556001} = 4567.818816993291
Share
Copied to clipboard
\frac{20000}{1.14^{1}}+\frac{50000}{\left(1+0.14\right)^{2}}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Add 1 and 0.14 to get 1.14.
\frac{20000}{1.14}+\frac{50000}{\left(1+0.14\right)^{2}}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Calculate 1.14 to the power of 1 and get 1.14.
\frac{2000000}{114}+\frac{50000}{\left(1+0.14\right)^{2}}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Expand \frac{20000}{1.14} by multiplying both numerator and the denominator by 100.
\frac{1000000}{57}+\frac{50000}{\left(1+0.14\right)^{2}}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Reduce the fraction \frac{2000000}{114} to lowest terms by extracting and canceling out 2.
\frac{1000000}{57}+\frac{50000}{1.14^{2}}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Add 1 and 0.14 to get 1.14.
\frac{1000000}{57}+\frac{50000}{1.2996}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Calculate 1.14 to the power of 2 and get 1.2996.
\frac{1000000}{57}+\frac{500000000}{12996}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Expand \frac{50000}{1.2996} by multiplying both numerator and the denominator by 10000.
\frac{1000000}{57}+\frac{125000000}{3249}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Reduce the fraction \frac{500000000}{12996} to lowest terms by extracting and canceling out 4.
\frac{182000000}{3249}+\frac{50000^{1}}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Add \frac{1000000}{57} and \frac{125000000}{3249} to get \frac{182000000}{3249}.
\frac{182000000}{3249}+\frac{50000}{\left(1+0.14\right)^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Calculate 50000 to the power of 1 and get 50000.
\frac{182000000}{3249}+\frac{50000}{1.14^{3}}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Add 1 and 0.14 to get 1.14.
\frac{182000000}{3249}+\frac{50000}{1.481544}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Calculate 1.14 to the power of 3 and get 1.481544.
\frac{182000000}{3249}+\frac{50000000000}{1481544}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Expand \frac{50000}{1.481544} by multiplying both numerator and the denominator by 1000000.
\frac{182000000}{3249}+\frac{6250000000}{185193}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Reduce the fraction \frac{50000000000}{1481544} to lowest terms by extracting and canceling out 8.
\frac{16624000000}{185193}+\frac{25000}{\left(1+0.14\right)^{4}}-100000
Add \frac{182000000}{3249} and \frac{6250000000}{185193} to get \frac{16624000000}{185193}.
\frac{16624000000}{185193}+\frac{25000}{1.14^{4}}-100000
Add 1 and 0.14 to get 1.14.
\frac{16624000000}{185193}+\frac{25000}{1.68896016}-100000
Calculate 1.14 to the power of 4 and get 1.68896016.
\frac{16624000000}{185193}+\frac{2500000000000}{168896016}-100000
Expand \frac{25000}{1.68896016} by multiplying both numerator and the denominator by 100000000.
\frac{16624000000}{185193}+\frac{156250000000}{10556001}-100000
Reduce the fraction \frac{2500000000000}{168896016} to lowest terms by extracting and canceling out 16.
\frac{1103818000000}{10556001}-100000
Add \frac{16624000000}{185193} and \frac{156250000000}{10556001} to get \frac{1103818000000}{10556001}.
\frac{48217900000}{10556001}
Subtract 100000 from \frac{1103818000000}{10556001} to get \frac{48217900000}{10556001}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}