Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}
Rationalize the denominator of \frac{2000\sqrt{3}}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
\frac{2000\sqrt{3}\left(3+\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
\frac{6000\sqrt{3}+2000\left(\sqrt{3}\right)^{2}}{6}
Use the distributive property to multiply 2000\sqrt{3} by 3+\sqrt{3}.
\frac{6000\sqrt{3}+2000\times 3}{6}
The square of \sqrt{3} is 3.
\frac{6000\sqrt{3}+6000}{6}
Multiply 2000 and 3 to get 6000.