Verify
false
Share
Copied to clipboard
\frac{10}{3}=\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
\frac{10}{3}=\frac{5}{3}-\frac{12}{3}-\frac{21}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Convert 4 to fraction \frac{12}{3}.
\frac{10}{3}=\frac{5-12}{3}-\frac{21}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Since \frac{5}{3} and \frac{12}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}=-\frac{7}{3}-\frac{21}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Subtract 12 from 5 to get -7.
\frac{10}{3}=-\frac{7}{3}-\frac{7}{2}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
\frac{10}{3}=-\frac{14}{6}-\frac{21}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Least common multiple of 3 and 2 is 6. Convert -\frac{7}{3} and \frac{7}{2} to fractions with denominator 6.
\frac{10}{3}=\frac{-14-21}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Since -\frac{14}{6} and \frac{21}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}=-\frac{35}{6}+\frac{7}{8}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Subtract 21 from -14 to get -35.
\frac{10}{3}=-\frac{140}{24}+\frac{21}{24}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Least common multiple of 6 and 8 is 24. Convert -\frac{35}{6} and \frac{7}{8} to fractions with denominator 24.
\frac{10}{3}=\frac{-140+21}{24}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Since -\frac{140}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\frac{10}{3}=-\frac{119}{24}-4\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Add -140 and 21 to get -119.
\frac{10}{3}=-\frac{119}{24}-\frac{96}{24}\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Convert 4 to fraction \frac{96}{24}.
\frac{10}{3}=\frac{-119-96}{24}\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Since -\frac{119}{24} and \frac{96}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{3}=-\frac{215}{24}\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Subtract 96 from -119 to get -215.
\frac{80}{24}=-\frac{215}{24}\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Least common multiple of 3 and 24 is 24. Convert \frac{10}{3} and -\frac{215}{24} to fractions with denominator 24.
\text{false}\text{ and }\frac{5}{3}-4-\frac{21}{6}+\frac{7}{8}-4=-4-1
Compare \frac{80}{24} and -\frac{215}{24}.
\text{false}\text{ and }\frac{5}{3}-\frac{12}{3}-\frac{21}{6}+\frac{7}{8}-4=-4-1
Convert 4 to fraction \frac{12}{3}.
\text{false}\text{ and }\frac{5-12}{3}-\frac{21}{6}+\frac{7}{8}-4=-4-1
Since \frac{5}{3} and \frac{12}{3} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{7}{3}-\frac{21}{6}+\frac{7}{8}-4=-4-1
Subtract 12 from 5 to get -7.
\text{false}\text{ and }-\frac{7}{3}-\frac{7}{2}+\frac{7}{8}-4=-4-1
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
\text{false}\text{ and }-\frac{14}{6}-\frac{21}{6}+\frac{7}{8}-4=-4-1
Least common multiple of 3 and 2 is 6. Convert -\frac{7}{3} and \frac{7}{2} to fractions with denominator 6.
\text{false}\text{ and }\frac{-14-21}{6}+\frac{7}{8}-4=-4-1
Since -\frac{14}{6} and \frac{21}{6} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{35}{6}+\frac{7}{8}-4=-4-1
Subtract 21 from -14 to get -35.
\text{false}\text{ and }-\frac{140}{24}+\frac{21}{24}-4=-4-1
Least common multiple of 6 and 8 is 24. Convert -\frac{35}{6} and \frac{7}{8} to fractions with denominator 24.
\text{false}\text{ and }\frac{-140+21}{24}-4=-4-1
Since -\frac{140}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\text{false}\text{ and }-\frac{119}{24}-4=-4-1
Add -140 and 21 to get -119.
\text{false}\text{ and }-\frac{119}{24}-\frac{96}{24}=-4-1
Convert 4 to fraction \frac{96}{24}.
\text{false}\text{ and }\frac{-119-96}{24}=-4-1
Since -\frac{119}{24} and \frac{96}{24} have the same denominator, subtract them by subtracting their numerators.
\text{false}\text{ and }-\frac{215}{24}=-4-1
Subtract 96 from -119 to get -215.
\text{false}\text{ and }-\frac{215}{24}=-5
Subtract 1 from -4 to get -5.
\text{false}\text{ and }-\frac{215}{24}=-\frac{120}{24}
Convert -5 to fraction -\frac{120}{24}.
\text{false}\text{ and }\text{false}
Compare -\frac{215}{24} and -\frac{120}{24}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}