Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2.8i\left(4-2.8i\right)}{\left(4+2.8i\right)\left(4-2.8i\right)}\times 10
Multiply both numerator and denominator of \frac{2.8i}{4+2.8i} by the complex conjugate of the denominator, 4-2.8i.
\frac{2.8i\left(4-2.8i\right)}{4^{2}-2.8^{2}i^{2}}\times 10
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2.8i\left(4-2.8i\right)}{23.84}\times 10
By definition, i^{2} is -1. Calculate the denominator.
\frac{2.8i\times 4+2.8\left(-2.8\right)i^{2}}{23.84}\times 10
Multiply 2.8i times 4-2.8i.
\frac{2.8i\times 4+2.8\left(-2.8\right)\left(-1\right)}{23.84}\times 10
By definition, i^{2} is -1.
\frac{7.84+11.2i}{23.84}\times 10
Do the multiplications in 2.8i\times 4+2.8\left(-2.8\right)\left(-1\right). Reorder the terms.
\left(\frac{49}{149}+\frac{70}{149}i\right)\times 10
Divide 7.84+11.2i by 23.84 to get \frac{49}{149}+\frac{70}{149}i.
\frac{49}{149}\times 10+\frac{70}{149}i\times 10
Multiply \frac{49}{149}+\frac{70}{149}i times 10.
\frac{490}{149}+\frac{700}{149}i
Do the multiplications.
Re(\frac{2.8i\left(4-2.8i\right)}{\left(4+2.8i\right)\left(4-2.8i\right)}\times 10)
Multiply both numerator and denominator of \frac{2.8i}{4+2.8i} by the complex conjugate of the denominator, 4-2.8i.
Re(\frac{2.8i\left(4-2.8i\right)}{4^{2}-2.8^{2}i^{2}}\times 10)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2.8i\left(4-2.8i\right)}{23.84}\times 10)
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{2.8i\times 4+2.8\left(-2.8\right)i^{2}}{23.84}\times 10)
Multiply 2.8i times 4-2.8i.
Re(\frac{2.8i\times 4+2.8\left(-2.8\right)\left(-1\right)}{23.84}\times 10)
By definition, i^{2} is -1.
Re(\frac{7.84+11.2i}{23.84}\times 10)
Do the multiplications in 2.8i\times 4+2.8\left(-2.8\right)\left(-1\right). Reorder the terms.
Re(\left(\frac{49}{149}+\frac{70}{149}i\right)\times 10)
Divide 7.84+11.2i by 23.84 to get \frac{49}{149}+\frac{70}{149}i.
Re(\frac{49}{149}\times 10+\frac{70}{149}i\times 10)
Multiply \frac{49}{149}+\frac{70}{149}i times 10.
Re(\frac{490}{149}+\frac{700}{149}i)
Do the multiplications in \frac{49}{149}\times 10+\frac{70}{149}i\times 10.
\frac{490}{149}
The real part of \frac{490}{149}+\frac{700}{149}i is \frac{490}{149}.