Solve for L
L = \frac{11 \sqrt{284117089} + 40613}{142200} \approx 1.589497221
L=\frac{40613-11\sqrt{284117089}}{142200}\approx -1.018287657
Share
Copied to clipboard
2.4351+1.28825-6L^{-1}\left(0.959-0.5925L^{2}+0.959L\right)=0
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
3.72335-6L^{-1}\left(0.959-0.5925L^{2}+0.959L\right)=0
Add 2.4351 and 1.28825 to get 3.72335.
3.72335-\left(5.754L^{-1}-3.555L+5.754\right)=0
Use the distributive property to multiply 6L^{-1} by 0.959-0.5925L^{2}+0.959L.
3.72335-5.754L^{-1}+3.555L-5.754=0
To find the opposite of 5.754L^{-1}-3.555L+5.754, find the opposite of each term.
-2.03065-5.754L^{-1}+3.555L=0
Subtract 5.754 from 3.72335 to get -2.03065.
3.555L-2.03065-5.754\times \frac{1}{L}=0
Reorder the terms.
3.555LL+L\left(-2.03065\right)-5.754=0
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
3.555L^{2}+L\left(-2.03065\right)-5.754=0
Multiply L and L to get L^{2}.
3.555L^{2}-2.03065L-5.754=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
L=\frac{-\left(-2.03065\right)±\sqrt{\left(-2.03065\right)^{2}-4\times 3.555\left(-5.754\right)}}{2\times 3.555}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3.555 for a, -2.03065 for b, and -5.754 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{-\left(-2.03065\right)±\sqrt{4.1235394225-4\times 3.555\left(-5.754\right)}}{2\times 3.555}
Square -2.03065 by squaring both the numerator and the denominator of the fraction.
L=\frac{-\left(-2.03065\right)±\sqrt{4.1235394225-14.22\left(-5.754\right)}}{2\times 3.555}
Multiply -4 times 3.555.
L=\frac{-\left(-2.03065\right)±\sqrt{4.1235394225+81.82188}}{2\times 3.555}
Multiply -14.22 times -5.754 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
L=\frac{-\left(-2.03065\right)±\sqrt{85.9454194225}}{2\times 3.555}
Add 4.1235394225 to 81.82188 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
L=\frac{-\left(-2.03065\right)±\frac{11\sqrt{284117089}}{20000}}{2\times 3.555}
Take the square root of 85.9454194225.
L=\frac{2.03065±\frac{11\sqrt{284117089}}{20000}}{2\times 3.555}
The opposite of -2.03065 is 2.03065.
L=\frac{2.03065±\frac{11\sqrt{284117089}}{20000}}{7.11}
Multiply 2 times 3.555.
L=\frac{11\sqrt{284117089}+40613}{7.11\times 20000}
Now solve the equation L=\frac{2.03065±\frac{11\sqrt{284117089}}{20000}}{7.11} when ± is plus. Add 2.03065 to \frac{11\sqrt{284117089}}{20000}.
L=\frac{11\sqrt{284117089}+40613}{142200}
Divide \frac{40613+11\sqrt{284117089}}{20000} by 7.11 by multiplying \frac{40613+11\sqrt{284117089}}{20000} by the reciprocal of 7.11.
L=\frac{40613-11\sqrt{284117089}}{7.11\times 20000}
Now solve the equation L=\frac{2.03065±\frac{11\sqrt{284117089}}{20000}}{7.11} when ± is minus. Subtract \frac{11\sqrt{284117089}}{20000} from 2.03065.
L=\frac{40613-11\sqrt{284117089}}{142200}
Divide \frac{40613-11\sqrt{284117089}}{20000} by 7.11 by multiplying \frac{40613-11\sqrt{284117089}}{20000} by the reciprocal of 7.11.
L=\frac{11\sqrt{284117089}+40613}{142200} L=\frac{40613-11\sqrt{284117089}}{142200}
The equation is now solved.
2.4351+1.28825-6L^{-1}\left(0.959-0.5925L^{2}+0.959L\right)=0
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
3.72335-6L^{-1}\left(0.959-0.5925L^{2}+0.959L\right)=0
Add 2.4351 and 1.28825 to get 3.72335.
3.72335-\left(5.754L^{-1}-3.555L+5.754\right)=0
Use the distributive property to multiply 6L^{-1} by 0.959-0.5925L^{2}+0.959L.
3.72335-5.754L^{-1}+3.555L-5.754=0
To find the opposite of 5.754L^{-1}-3.555L+5.754, find the opposite of each term.
-2.03065-5.754L^{-1}+3.555L=0
Subtract 5.754 from 3.72335 to get -2.03065.
-5.754L^{-1}+3.555L=2.03065
Add 2.03065 to both sides. Anything plus zero gives itself.
3.555L-5.754\times \frac{1}{L}=2.03065
Reorder the terms.
3.555LL-5.754=2.03065L
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by L.
3.555L^{2}-5.754=2.03065L
Multiply L and L to get L^{2}.
3.555L^{2}-5.754-2.03065L=0
Subtract 2.03065L from both sides.
3.555L^{2}-2.03065L=5.754
Add 5.754 to both sides. Anything plus zero gives itself.
\frac{3.555L^{2}-2.03065L}{3.555}=\frac{5.754}{3.555}
Divide both sides of the equation by 3.555, which is the same as multiplying both sides by the reciprocal of the fraction.
L^{2}+\left(-\frac{2.03065}{3.555}\right)L=\frac{5.754}{3.555}
Dividing by 3.555 undoes the multiplication by 3.555.
L^{2}-\frac{40613}{71100}L=\frac{5.754}{3.555}
Divide -2.03065 by 3.555 by multiplying -2.03065 by the reciprocal of 3.555.
L^{2}-\frac{40613}{71100}L=\frac{1918}{1185}
Divide 5.754 by 3.555 by multiplying 5.754 by the reciprocal of 3.555.
L^{2}-\frac{40613}{71100}L+\left(-\frac{40613}{142200}\right)^{2}=\frac{1918}{1185}+\left(-\frac{40613}{142200}\right)^{2}
Divide -\frac{40613}{71100}, the coefficient of the x term, by 2 to get -\frac{40613}{142200}. Then add the square of -\frac{40613}{142200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
L^{2}-\frac{40613}{71100}L+\frac{1649415769}{20220840000}=\frac{1918}{1185}+\frac{1649415769}{20220840000}
Square -\frac{40613}{142200} by squaring both the numerator and the denominator of the fraction.
L^{2}-\frac{40613}{71100}L+\frac{1649415769}{20220840000}=\frac{34378167769}{20220840000}
Add \frac{1918}{1185} to \frac{1649415769}{20220840000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(L-\frac{40613}{142200}\right)^{2}=\frac{34378167769}{20220840000}
Factor L^{2}-\frac{40613}{71100}L+\frac{1649415769}{20220840000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(L-\frac{40613}{142200}\right)^{2}}=\sqrt{\frac{34378167769}{20220840000}}
Take the square root of both sides of the equation.
L-\frac{40613}{142200}=\frac{11\sqrt{284117089}}{142200} L-\frac{40613}{142200}=-\frac{11\sqrt{284117089}}{142200}
Simplify.
L=\frac{11\sqrt{284117089}+40613}{142200} L=\frac{40613-11\sqrt{284117089}}{142200}
Add \frac{40613}{142200} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}