Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\left(-4-5x\right)\left(2-7x\right)=\left(5x-1\right)\left(3+7x\right)
Variable x cannot be equal to any of the values -\frac{4}{5},\frac{1}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-1\right)\left(5x+4\right), the least common multiple of 1-5x,4+5x.
-8+18x+35x^{2}=\left(5x-1\right)\left(3+7x\right)
Use the distributive property to multiply -4-5x by 2-7x and combine like terms.
-8+18x+35x^{2}=8x+35x^{2}-3
Use the distributive property to multiply 5x-1 by 3+7x and combine like terms.
-8+18x+35x^{2}-8x=35x^{2}-3
Subtract 8x from both sides.
-8+10x+35x^{2}=35x^{2}-3
Combine 18x and -8x to get 10x.
-8+10x+35x^{2}-35x^{2}=-3
Subtract 35x^{2} from both sides.
-8+10x=-3
Combine 35x^{2} and -35x^{2} to get 0.
10x=-3+8
Add 8 to both sides.
10x=5
Add -3 and 8 to get 5.
x=\frac{5}{10}
Divide both sides by 10.
x=\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}